Leti innovation for industry

Opportunities and challenges of silicon photonics based System-In-Package

ECTC 2014

Panel session : Emerging Technologies and Market Trends of Silicon Photonics

Speaker : Stéphane Bernabé (Leti – Photonics Department)

Presentation built with help from colleagues at the Silicon Photonics lab (S. Menezo, L. Fulbert), and at the 3D Packaging team (Y. Lamy, H. Ben Jamaa, P. Leduc, G. Pares)

Silicon Photonics at Leti

French R&D institute in microelectronics & nanotechnologies from

1,700 researchers

Over 2,200 patents

250 M€ annual budget

50 start-ups & 365 industrial partners

Silicon Photonics

A dedicated lab involved in :

- Component and circuits design
- Modeling
- Module integration
- On-wafer characterization

200 mm and 300mm PIC (*Photonic Integrated Circuits*) manufacturing on SOI wafers

~100 people working on 3D IC and 3D Packaging

Full 200mm & 300mm 3D capabilities

Silicon Photonics : roadmap

100Mbps 1Gbps 10Gbps 100Gbps 1Tbps

Link Bandwidth

To the package/chip

Leti Eccica¹⁴ P

1Mbps 10Mbps

3

Telecom Networks

Building blocks

Panel session : Emerging Technologies and Market Trends of Silicon Photonics - S.Bernabé

4

Opportunities for Silicon Photonics PICs

- Key enabler for high complexity PICs
 - Modulation / photodetection / WDM filtering on the same chip
 - Integrated laser for Tx or local oscillator
 - Enabler for PDM-QPSK modulation format
- Very High Density Interconnections & aggregated bandwidth, w/ WDM
 - Enabler for Tbps applications
- Scalable architectures
- Mass production volume
 - CMOS compatible
- Today , pushed by 100G module standards
 - Decreasing form factors
 - CFP modules

leti

Cisco's CPAK module

| 5

Optical Network on chip

- Address manycore architectures
- Low latency, multiple access
- Make use of SOI photonics chips as interposer (System On Package)

 \rightarrow Metallic interposer optimal for less than 4 init/targets \rightarrow Active interposer is best for intermediate number of cores (5~10 init/targets)

 \rightarrow Photonics becomes relevant for many-core system (>20)

leti

 \rightarrow Photonic link yet requires improvement on energy efficiency performances: from 10 pJ/bit to 100 fJ/bit in 2020

From Y. Thonnart, Optical Systems on Chip: a Physical Perspective, FETCH Winter School, January 10th, 2014|

nents and Technology Conference

Large interposer (e.g. 10cm² or more)

- →Integration of multiple advanced technologies
- External IP, interface standards, supply chain

6

Silicon photonics based SiP

- Rationale
 - 2D use of the board
 - Provide optical IOs to large EICs
- Targeted applications
 - Intra-rack
 - Intra-board
 - HPC

leti

- VCSEL modules have already switched to SiP architectures
 - BGA style packages
 - No standard at the moment

Requirements

- High channel density
 - Multichannel compatible (mix WDM+Parallel)
- Low footprint
 - But high I/O count
- Low profile
 - Blade server compatible
- High Bandwidth/data rate
 - up to 25Gbps
- Multifiber Optical plug/connector
- CMOS process compatible
 - And SMD process compatible
- High throughput... and low cost

Panel session : Emerging Technologies and Market Trends of Silicon Photonics - S.Bernabé

8

Packaging scenarios

Standalone module

Electrical path trough Levels 0, 1, 2 + PCB→ BW and power consumption limitations Flexible

Co-packaging with optical transceiver

Electrical path trough Levels 0, 1, 2 Co-packaging challenging: thermal issues, supply chain Partitionning to be evaluated

Photonic interposer

Electrical path trough Levels 0, 1 Co-packaging challenging: thermal issues, supply chain, cost of large photonic interposer

leti

Challenges

- Laser integration
- RF management
- Optical coupling
- Thermal management
 - Could be a killer
 - T sensitive functions

From IRT Nanoelec project

GMERIZ

Challenge : laser integration

Alignment of laser structure / waveguides

Technology Conference

CW operation @ λ = 1.57µm , SMSR~20dB Key Enabling technology for integrated multi-lambda Surface cleaning sources, up to 10mW coupled power SOI substrate 1- Processed SOI substrate Low temperature bonding thinned down to 2- PECVD silica deposition 3 um 18 1564 1566 1568 1570 1572 1574 1576 15°C Laser processing Spectrum @ I=140mA 16 16 20°C 25°C 14 14 3- CMP planarization 30°C smsr~20dB 12 12 L_{out} -Fiber(mW) dBm 35°C (Mm) 40°C 10 10 45°C 8 Active region 50°C III-V Ğ (InGaAsP MOW 55°C regior eu o C 4- Surface Si Waveguide SOI Cleaning region Si Substrate 1564 1566 1568 1570 1572 1574 1576 150 200 250 300 350 100 400 50 Wavelength(nm) I (mA) 11 leti

Laser integration

Chip L

PCB

III-heterostructure

Challenges : RF & 3D

- 3D packaging is a key technologies for future Silicon Photonics devices
- Rationale for hybrid integration
 - KGD approach, Standard assembly technology, high yield
 - Short RF lines between photonics functions and related ASICs (TIA, Drivers)
 - Chip size independant
- Flip-chip assembly advantages
 - Copper/SAC microbumps

leti

- Low inductance compared to wire-bonding
- High density (pitch 40μm, or lower)

nd Technology Conference

Challenges : optical coupling

- Use of vertical grating couplers
 - On wafer test capability, 2D IO enabling
 - Matched MFD for SMF butt coupling
 - Moderate coupling losses
- Vgroove array combined with active alignment
- 2D and Lensed MT-based connectors
- Multicore fiber

leti

Typ. 40μm pitch, 7 cores/fiber

PIC

Optical coupling toolbox

Typical penalty 0.2 dB single fiber 0.5-1dB dB fiber array Assembly time: <5 min Unitary process (pigatiling)

Semi-passive alignement

Vision assisted alignement Silicon etched groove ferrules 2.5 to 4 dB penalty loss Assy time ~1 min High throughput assembly of the fiber holder (Pick & place)

puce optique bridge

puce optique substrat

Passive alignement

Vertical Grating coupler Self alignement In solder bumps Excess loss due to misalignement < 1dB Fully collective process (reflow)

Conclusion

- Silicon Photonics is a key enabler for Terabit VSR optical links
- The natural trend for this class of application is to use microlectronic-like modules, especially through System-In-Package approach
- For this kind of module, several specific challenges have to be adressed
 - Thermal
 - RF links & related power consumption
 - Optical coupling
- For most of these challenges, 3D packaging toolbox provides solutions
- Photonic Integrated Circuits and 3D packaging need to be merged in order to build very high density optical modules

-

LABORATOIRE D'ÉLECTRONIQUE **ET DE TECHNOLOGIES DEL'INFORMATION**

www.leti.fr

