Opportunities and challenges of silicon photonics based System-In-Package

ECTC 2014

Speaker: Stéphane Bernabé (Leti – Photonics Department)

Presentation built with help from colleagues at the Silicon Photonics lab (S. Menezo, L. Fulbert), and at the 3D Packaging team (Y. Lamy, H. Ben Jamaa, P. Leduc, G. Pares)
Silicon Photonics at Leti

French R&D institute in microelectronics & nanotechnologies from
1,700 researchers
Over 2,200 patents
250 M€ annual budget
50 start-ups & 365 industrial partners

~100 people working on 3D IC and 3D Packaging
Full 200mm & 300mm 3D capabilities

Silicon Photonics
A dedicated lab involved in:
- Component and circuits design
- Modeling
- Module integration
- On-wafer characterization
200 mm and 300mm PIC (Photonic Integrated Circuits) manufacturing on SOI wafers
Silicon Photonics: roadmap

- On-board modules
- Data centers: AOC
- Telecom Networks

Source: Brocade
Building blocks

Optical modulator up to 40Gb/s

Laser source

Ring modulator

Waveguides

WDM filters

Photodetector up to 40Gb/s

Fiber coupler

Microbumps
Opportunities for Silicon Photonics PICs

- Key enabler for high complexity PICs
 - Modulation / photodetection / WDM filtering on the same chip
 - Integrated laser for Tx or local oscillator
 - Enabler for PDM-QPSK modulation format

- Very High Density Interconnections & aggregated bandwidth, w/ WDM
 - Enabler for Tbps applications

- Scalable architectures

- Mass production volume
 - CMOS compatible

- Today, pushed by 100G module standards
 - Decreasing form factors
 - CFP modules
 - Cisco’s CPAK module
Optical Network on chip

- Address manycore architectures
- Low latency, multiple access
- Make use of SOI photonics chips as interposer (System On Package)

→ Metallic interposer optimal for less than 4 init/targets
→ Active interposer is best for intermediate number of cores (5~10 init/targets)
→ Photonics becomes relevant for many-core system (>20)
→ Photonic link yet requires improvement on energy efficiency performances: from 10 pJ/bit to 100 fJ/bit in 2020

From Y. Thonnart, Optical Systems on Chip: a Physical Perspective, FETCH Winter School, January 10th, 2014
Silicon photonics based SiP

- Rationale
 - 2D use of the board
 - Provide optical IOs to large EICs

- Targeted applications
 - Intra-rack
 - Intra-board
 - HPC

- VCSEL modules have already switched to SiP architectures
 - BGA style packages
 - No standard at the moment
Requirements

- High channel density
 - Multichannel compatible (mix WDM+Parallel)
- Low footprint
 - But high I/O count
- Low profile
 - Blade server compatible
- High Bandwidth/data rate
 - up to 25Gbps
- Multifiber Optical plug/connector
- CMOS process compatible
 - And SMD process compatible
- High throughput... and low cost
Packaging scenarios

Standalone module

- Electrical path trough Levels 0, 1, 2 + PCB → BW and power consumption limitations
- Flexible

Co-packaging with optical transceiver

- Electrical path trough Levels 0, 1, 2
- Co-packaging challenging: thermal issues, supply chain
- Partitionning to be evaluated

Photonic interposer

- Electrical path trough Levels 0, 1
- Co-packaging challenging: thermal issues, supply chain, cost of large photonic interposer
Challenges

- Laser integration
- RF management
- Optical coupling
- Thermal management
 - Could be a killer
 - T sensitive functions
 - Hot spots

- Electrical IN/OUT
- Signal integrity
- Power consumption
- Path to volume Mfg
- Manufacturability
- Cost
- Scalability

- Optical IN/OUT
- Losses
- Polarization

- Thermal management
- Heat sinking
- WDM control

- Fiber optic coupler (multiple channels)
- TIA/driver
- BGA laminate
- PIC

- From IRT Nanoelec project
- From HELIOS EU project

EIC (FPGA, ASIC, µP)
Challenge: laser integration

- Alignment of laser structure / waveguides
- CW operation @ $\lambda = 1.57\mu m$, SMSR~20dB
- Key Enabling technology for integrated multi-lambda sources, up to 10mW coupled power

[Diagram showing steps of laser integration]

1. Processed SOI substrate
2. PECVD silica deposition
3. CMP planarization
4. Surface Cleaning

[Graph showing I vs. L_{out} for different temperatures]

Key Enabling technology for integrated multi-lambda sources, up to 10mW coupled power.
Challenges: RF & 3D

- 3D packaging is a key technology for future Silicon Photonics devices

- Rationale for hybrid integration
 - KGD approach, Standard assembly technology, high yield
 - Short RF lines between photonics functions and related ASICs (TIA, Drivers)
 - Chip size independant

- Flip-chip assembly advantages
 - Copper/SAC microbumps
 - Low inductance compared to wire-bonding
 - High density (pitch 40µm, or lower)
 - Low capacitance (<10 fF)

![Diagram of 3D packaging](image)
Challenges: optical coupling

- Use of vertical grating couplers
 - On wafer test capability, 2D IO enabling
 - Matched MFD for SMF butt coupling
 - Moderate coupling losses

- Vgroove array combined with active alignment

- 2D and Lensed MT-based connectors

- Multicore fiber
 - Typ. 40µm pitch, 7 cores/fiber

Panel session: Emerging Technologies and Market Trends of Silicon Photonics – S. Bernabé

EIC (FPGA, ASIC, µP)

Fiber optic coupler (multiple channels)

TIA/driver

BGA laminate

PIC

Fiber optic coupler (multiple channels)
Optical coupling toolbox

Active alignment
- Typical penalty: 0.2 dB single fiber
- 0.5-1 dB dB fiber array
- Assembly time: <5 min
- Unitary process (pigatiling)

Semi-passive alignment
- Vision assisted alignment
- Silicon etched groove ferrules
- 2.5 to 4 dB penalty loss
- Assy time ~1 min
- High throughput assembly of the fiber holder (Pick & place)

Passive alignment
- Vertical Grating coupler
- Self alignment In solder bumps
- Excess loss due to misalignment < 1 dB
- Fully collective process (reflow)
Conclusion

- Silicon Photonics is a key enabler for Terabit VSR optical links
- The natural trend for this class of application is to use microelectronic-like modules, especially through System-In-Package approach
- For this kind of module, several specific challenges have to be addressed:
 - Thermal
 - RF links & related power consumption
 - Optical coupling
- For most of these challenges, 3D packaging toolbox provides solutions
- Photonic Integrated Circuits and 3D packaging need to be merged in order to build very high density optical modules
Tuesday Evening Panel Session
Emerging Technologies and Market Trends of Silicon Photonics
Southern Hemisphere II & III, 5th Floor
May 27th, 7:30PM – 9:30PM

Chair
Ricky Lee, Hong Kong University of Science and Technology
Chair
Jie Yue, Intel

Panelist
Michael Watts, MIT
Panelist
Stéphane Barnabe, CEA-Leti
Panelist
Jean Tranthoff, IBM
Panelist
Peter De Cock, Lucent
Panelist
John Cunningham, Oracle

CEA-Leti
MINATEC Campus, 17 rue des Martyrs
38054 GRENOBLE Cedex 9
Tel. +33 4 38 78 36 25

www.leti.fr