

Multi-physics modelling for Flexible Hybrid Electronics

Swaminathan Madhavan

Center for Co-Design of Chip, Package, System (C3PS) Georgia Institute of Technology

Multi-physics modelling for Flexible Hybrid Electronics

Modeling operating conditions important
Possible scenarios:

- Mechanical loading changes electrical response due to geometrical changes
- Mechanical loading changes electrical properties

Questions to be answered:

- □ Are such effects important?
- □ How do you model the electrical response in such scenarios?
- □ Are the commercially available tools adequate?
- □ How complex are such simulations?
- Can you develop models that are predictive and capture behavior?

Aerosol Jet Printed Microstrip Line

Screen Printed Power Inductor (Single Cycle)

• Silver ink 10.5 µm

PS: 15 mm

Red: Measured Blue: Simulated PS: Panel Separation

With decreasing panel separation both the inductance and Quality Factor decrease (measurements).

□ Modeling captures this effect partially!

Screen Printed Power Inductor (Multiple Cycles)

- Tensile Bending
- Four Cycles
- Flat 15mm Panel Separation – Flat -
- Substantial change in Inductance & Q Factor
- Unable to capture the Memory effect in Modeling!

Multi-physics Needs, Challenges & Possible Solutions for Flexible Hybrid Electronics

- □ Tools have reasonable capability to share Mechanical and Electrical Geometric Models
 - \circ Challenge
 - Unable to reproduce the exact mechanical loading conditions
- □ Multi-physics Modeling
 - o Challenges
 - Requires significant user expertise to set-up model
 - Numerical instability a problem sometimes
 - Does not account for any electrical property change due to mechanical loading (Ex: Resistance Change)
 - Does not account for any memory effects (Ex: Multiple cycle bending)
 - CPU & Memory Intensive
- $\hfill\square$ What needs to happen for FHE to succeed
 - Tools need to be well calibrated with measurements, gaps identified & solutions developed to fill gaps.
 - $\circ~$ Predictive modeling required that is Super Fast and error free
 - Correlate Multi-physics model with Measurements
 - Rely on tools to generate data samples
 - Use Machine Learning to develop predictive model
 - Incorporate into Process Design Kits (PDK)

