

1

Copper Hybrid Bond Interconnections for Chip-On-Wafer Applications

Tuesday, May 30, 2023, 10:30 a.m. – 12:00 p.m. Chairs: Thomas Gregorich (Infinera) and Chaoqi Zhang (Qualcomm) Moderator: Jan Vardaman (TechSearch International)

> We cordially thank our Special Session sponsor **RESONAC** Chemistry for Change

2023 IEEE 73rd Electronic Components and Technology Conference | Orlando, Florida | May 30 – June 2, 2023

ECTC 2023 Special Session 2

Chair **Thomas Greaorich** Infinera

Chaoai Zhana Jan Vardaman TechSearch International

Speaker Eric Bevne IMEC

Speaker **Thomas Urhmann** EVG

Chair

Qualcomm

Speaker Chris Scanlan Besi

Speaker Speaker **Kenneth Larsen Synopsis**

Speaker Intel

Raja Swaminathan AMD

Xavier Brun

As one of the primary building-blocks of IC packages, electrical interconnections are evolving rapidly to address increasing ultra-high bandwidth requirements. Copper Hybrid Bonds deliver the highestdensity chip-to-chip interconnect and are seen as a key enabling technology for ultra-high bandwidth devices/systems such as vertically-stacked chiplets.

This Special Session will explore the applications, requirements, and challenges of Copper Hybrid Bonds (CHB) for Chip-to-Wafer (C2W) applications. Wafer-to-wafer CHB has been in HVM for many years and continues to expand. While C2W is in production, challenges remain. This panel will discuss challenges and solutions for the expanded use of C2W Copper Hybrid Bonds.

2023 ECTC Special Session on Copper Hybrid Bonds

Copper Hybrid Bond Interconnections for Chip-to-Wafer Applications

Xavier F. Brun

Intel Corporation, Assembly Test Technology Development Chandler, AZ, United States

Ack. Sai A., Pooya T., Kaladhar R., Adel E., AP&PL Team

2023 IEEE 73rd Electronic Components and Technology Conference | Orlando, Florida | May 30 – June 2, 2023

Heterogeneous Packaging Requirements

ELECTRONICS PACKAGING SOCIETY

2023 IEEE 73rd Electronic Components and Technology Conference | Orlando, Florida | May 30 – June 2, 2023

C2W Hybrid Bonding Technology Challenges

Legal Notices

All product and service plans, and roadmaps are subject to change without notice. Any forecasts of goods and services needed for Intel's operations are provided for discussion purposes only. Intel will have no liability to make any purchase in connection with forecasts published in this document. Code names are often used by Intel to identify products, technologies, or services that are in development and usage may change over time. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Product and process performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex and www.Intel.com/ProcessInnovation.

The products and services described may contain defects or errors which may cause deviation from published specifications. Current characterized errata are available on request. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Statements in this document that refer to future plans or expectations are forward-looking statements. These statements are based on current expectations and involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in such statements. For more information on the factors that could cause actual results to differ materially, see our most recent earnings release and SEC filings at www.intc.com.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others. This document contains information on products and/or processes in development.

2023 IEEE 73rd Electronic Components and Technology Conference | Orlando, Florida | May 30 – June 2, 2023

Die-to-Wafer Hybrid bonding Technology Roadmap

Eric Beyne, imec

2023 IEEE 73rd Electronic Components and Technology Conference | Orlando, Florida | May 30 – June 2, 2023

System-level benefits drive microelectronic scaling

This is also the Main driver for 2.5D and 3D integration technologies:

- Increasing system complexity
- Increasing need for heterogeneous integration not only SOC
- Increasing die-to-die interconnect data bandwidth:
 - more interconnect channels,
 - higher interconnect speeds per interconnect
- Reducing die-to-die interconnect energy:
 - Shorter distance interconnect
 - Scaled, lower capacitance interconnects
 - Lower voltage

⇒ It is not about the number of interconnects but rather the available (local) interconnect density enabled by interconnect pitch scaling

2

Very high aggregate bandwidth

• Solder µbump technology: $50 \Rightarrow 25 \mu m$ pitch today

• Wafer-to-Wafer Hybrid bonding: $10 \Rightarrow 1 \ \mu m$ pitch today

• Solder µbump technology: $50 \Rightarrow 25 \mu m$ pitch today

• Wafer-to-Wafer Hybrid bonding: $10 \Rightarrow 1 \ \mu m$ pitch today

• Solder µbump technology: $50 \Rightarrow 25 \mu m$ pitch today

• Wafer-to-Wafer Hybrid bonding: $10 \Rightarrow 1 \ \mu m$ pitch today

Die-to-Die interconnect R&D @ imec

• Solder µbump technology: 20 \Rightarrow 10 \Rightarrow 7 \Rightarrow 5 µm pitch

• Wafer-to-Wafer Hybrid bonding: 2 μ m \Rightarrow 700nm \Rightarrow 500nm pitch

Die-to-Die interconnect R&D @ **Imec**

• Solder µbump technology: 20 \Rightarrow 10 \Rightarrow 7 \Rightarrow 5 µm pitch

• Die-to wafer Hybrid bonding: 10 ${\Rightarrow}5$ ${\Rightarrow}2~\mu m$ pitch

➤Ultra clean dicing

- Post dicing die cleaning
- Ultra-clean, High precision,High UPH D2W placement

• Wafer-to-Wafer Hybrid bonding: 2 μ m \Rightarrow 700nm \Rightarrow 500nm pitch

3D Interconnect Roadmap – imec R&D & Industry

R&D roadmap 5 to 10 year ahead of industry adoption

LECTRONICS

and Technology Confer

D2W Hybrid bonding will fill the 10 to 1 μm pitch gap between μBump bonding and W2W HB bonding

- W2W HB imec R&D
- W2W HB industry
- ▲ D2W HB imec R&D
- ▲ D2W HB industry
- D2W μBump imec R&D
- \diamond D2W µBump industry

D2W= Die-to-wafer bonding W2W= Wafer-to-Wafer bonding HB= Hybrid bonding

The 3D Interconnect Technology Landscape

1ec

PDF/SOLUTIONSTM

Confidential Information

Enabling Robust 3DHI Products: A Quality and Reliability Perspective

Broader 3DHI Challenges

 Design Architecture exploration Multi-X verification & analysis 	 Manufacturing Chiplet / interconnect / system quality Scalability 		DeploymentReliabilitySafety		
SDTCO			Security		
Resiliency					

PDF/SOLUTIONS[™]

PDF Capabilities: Hybrid Bonding Use Cases

Real-time 3DHI operations and test control E142 Single device traceability

End-to-end, anywhere to anywhere, correlation & problem-solving

R UPB000

+

Characterization Vehicle Infrastructure (probed)

In-circuit sensors and control

Massively parallel characterization of alignment / resistivity / performance ...

PDF/SOLUTIONS

Pre/post-assembly stress Burn-in / in-field aging

Chip-to-Wafer Hybrid Bonding Opportunities and Challenges

2023 ECTC Special Session on Copper Hybrid Bonds

Chris Scanlan SVP Technology, Besi

New 3D Chiplet Structures Use Variety of Processes

Enables faster, more complex devices with submicron placement accuracy.

+

Increased Performance

- Increased data transfer
- Higher bandwidth
- Higher speed

Lower Cost of Ownership

- Higher die yield
- Lower energy per bit
- Lower cost per contact
- Lower heat dissipation

Design Flexibility

- New 3D chiplets
- Fab node optimization
- Customized designs
- Highly configurable

First high-volume die-to-wafer hybrid bonder In production since Q1 2022 200 nm alignment accuracy At high speed of up to 2000 UPH Designed for use in front-end fab environment Optional cluster line integration via collaboration with AMAT 100 nm accuracy machine available in 2023 Roadmap to 50 nm accuracy

Besi

5/28/2023

Chiplets promise to allow integration of functional blocks from multiple companies into a single device, speeding development and reducing development cost

But several challenges must be addressed to integrate chiplets from different companies:

- Control and compatibility of the bonding surfaces
- Standardization of communication protocols and physical interfaces (e.g. UCIe)
- EDA tools and design flows
- Testability and verification of the individual chiplets and the assembly
- Performance binning and matching
- Yield ownership
- Failure analysis methods and ownership
- Product liability and allocation of risk
- Margin stacking
- Supply-chain management and logistics

Res

AMDA

3D ADVANCED PACKAGING ENABLING MOORE'S LAW'S NEXT FRONTIER

HYBRID BONDING COMES ALIVE TO ENABLE THE FUTURE OF HIGH- PERFORMANCE & AI COMPUTING

RAJA SWAMINATHAN

AMD CORPORATE VP ADVANCED PACKAGING LEADER

AMD together we advance_packaging

CAUTIONARY STATEMENT

This presentation contains forward-looking statements concerning Advanced Micro Devices, Inc. (AMD) such as the features, functionality, performance, availability, timing and expected benefits of AMD products; TAM for data center, PCs, embedded and gaming; and technology trends, innovation and roadmaps, which are made pursuant to the Safe Harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements are commonly identified by words such as "would," "may," "expects," "believes," "plans," "intends," "projects" and other terms with similar meaning. Investors are cautioned that the forward-looking statements in this presentation are based on current beliefs, assumptions and expectations, speak only as of the date of this presentation and involve risks and uncertainties that could cause actual results to differ materially from current expectations. Such statements are subject to certain known and unknown risks and uncertainties, many of which are difficult to predict and generally beyond AMD's control, that could cause actual results and other future events to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. Investors are urged to review in detail the risks and uncertainties in AMD's Securities and Exchange Commission filings, including but not limited to AMD's most recent reports on Forms 10-K and 10-Q.

AMD does not assume, and hereby disclaims, any obligation to update forward-looking statements made in this presentation, except as may be required by law.

Energy efficiency requires holistic innovation

- Energy efficiency is the primary limiter. We must innovate in new dimensions:
 - System-level optimizations; Domain-specific heterogeneous architecture
 - Tight integration of compute and memory with chiplet architectures, advanced packaging, new interconnects
 - Leveraging AI holistically

Application Packaging **Energy efficiency** through holistic Software Stack Compute design Interconnect Memory Accelerators

Silicon and Si Stacking

3D ARCHITECTURES HYBRID BONDING DRIVING MOORE'S LAW SCALING

Other 3D Architectures

3D Hybrid Bonding

> 3X Interconnect Energy Efficiency Compared to Micro Bump 3D

> 15X Interconnect Density Compared to Micro Bump 3D

AMD RYZEN™ 7 7800X3D

8 Cores 16 Threads

Processor architecture

up to

5.0 GHz

Boost

^{up to} 104 MB L2+L3 Cache

120W+ TDP

5nm Technology

AMD RYZEN™ 9 7950X3D

Ultimate processor for gamers and creators

up to	up to	up to	
16 Cores	5.7 GHz	144 MB	120W
32 Threads	Boost	L2+L3 Cache	TDP
ZEN Processor	architecture	5nm Technology	

See endnotes R5K-107, GD-150, RPL-041

AMD together we advance_packaging

AND INSTINCT[™] MI300 The world's first data center integrated CPU + GPU

146B

Transistors

128GB

HBM3

AMD CDNA[™] 3 Unified Memory APU Architecture

AMD together we advance_packaging

DESIGN AUTOMATION OPPORTUNITIES

MULTI-SCALE DESIGN/PROCESS OPTIMIZATION NEEDED TO MANAGE WARPAGE AND INTERCONNECT RELIABILITY

NEXT GEN 3D ARCH REQUIRES NEXT GEN EDA TOOLS

1) STANDARDIZE DRC TOOL SET

DRC decks spanning all design components in 2.5D/3D architectures

3) STANDARDIZE FILE FORMATS Create a seamless tool-totool interaction from design to analysis

2) ENABLE TRUE SILICON-PACAKGE CO-DESIGN Proliferate common tool platform across silicon and package designs

 4) INCREASE TOOL CAPACITY
 EDA tools to stay lockstep with design pin count increases

EDA TOOL ECOSYSTEM NEEDS TO MERGE SILICON AND PACKAGE TOOLCHAINS

AMD together we advance_packaging

FUTURE OF 3D STACKING

ADVANCED PACKAGING CAN ENABLE INTEGRATION SCHEMES NOT POSSIBLE WITH MONOLITHIC DESIGNS

2023 ECTC Panel Discussion

D2W Considerations

	Hybrid W2W Bonding	Hybrid D2W Bonding	THUN THE TOTAL		
Maturity	Wafer Bonding Equipment and Process are matured since 2010	Process and Equipment maturity is starting to yield but still many difficulties	EVG320D2W throughput range		
Contact Pitch	<pre><1µm pitch in production <500nm in development </pre>	Currently 9µm pitch in production Roadmap for 2023: 2µm	EVG Gemini FB XT throughput range		
Equipment Capability	Alignment: <50nm (3s) Post Bond Overlay: <75nm (3s)	Alignment: <150nm Post Bond Overlay: ~350nm	 Direct placement throughput mat is impossible to achieve, as pre- processing and die placement sh throughput difference between 2 10x for standard die sizes For small dies of less than 6x6m 		
Die Size	Die Size and Grid Matching required	No limitations in die size and system segmentation			
Segmentation	Each bonding layer consist of one node	Each chiplet can consist of a different node			
Yield	Cumulative yield of each bonded layer	Cumulative yield can be avoided by testing	 D2W bonding cost is strongly increasing W2W bonding can offer improved of 		
Throughput	>25 bonds per hour	Related to chip size and amount of chiplets per system	yield ratio		

D2W vs W2W Hybrid Bonding

35 30

10

20

Direct placement throughput matching impossible to achieve, as prerocessing and die placement show a nroughput difference between 2x to 0x for standard die sizes

- or small dies of less than 6x6mm² 02W bonding cost is strongly ncreasing
- V2W bonding can offer improved cost / ield ratio

D2W Hybrid Bonding | Many ways to succeed...

	Co-D2W	Reconstructed W2W	DP-D2W	SA-D2W
Transfer Method	Collective Bonding (Die Level Bonding)	Reconstructed W2W (Anorganic Fill Process)	Direct placement of activated dies using Flip Chip Bonder	Self Assembly on hydrophilic guiding pads
Pro's	 Proven technology Die Activation and cleaning equivalent to W2W hybrid bonding Oxide management Rework on carrier feasible 	 Proven process High yield, clean process All based on standardized wafer-based manufacturing equipment 	 Versatile method Die thickness invariant 	 Avoids high precision flip chip bonder and potential cost saving Die thickness invariant
Con's	 Error propagation of D2W + W2W alignment Cost of carrier prep, utilization and clean Die thickness needs to be in narrow range 	 W2W bonding process is heavily impacted by die grid and filling factor between dies 	 Bonding interface needs to be touched Die handling especially for multi die stacks such as SRAM, DRAM Particle management during die placement 	 High precision die preparation using chemical treated zones Dicing potentially affects placement Die strain is affecting self alignment results
Maturity	Limited volume production proven for several years	Limited volume production	Limited volume production	Experimental results available, Feasibility testing ongoing

Combination of known good dies on carrier with anorganic wafer level pre processing, post processing and W2W bonding

EV Group Confidential and Proprietary	www.EVGroup.com

D2W Hybrid Bonding | Process Considerations

Source: ASMPT / EVG Paper "Direct Die to Wafer Cu Hybrid Bonding for Volume Production" - Session 3

www.EVGroup.com

SYNOPSYS

C2W Cu Hybrid Bonding Design and EDA Perspective

Abhijeet Chakraborty, VP Engineering, Synopsys Inc/ May 30, 2023

ECTC

Semiconductor Design Productivity Waves

System Optimization

Choice is driven by power/performance/form-factor/cost/time

2023 ECTC

Multi-Domain, Multi-Physics Analysis

Mechanical Reliability

The interface bonding strength between a substrate and a complex material system, such as SiCOH, can be analyzed by molecular dynamics method with Synopsys QuantumATK

Scalable Design Closure

Addressing massive systemic complexity of heterogeneous system

Manufacturing Ramp and Product Reliability

Synopsys' TestMAX and the SLM Family of products

Multi-Die System Test & Repair Product Quality (KGD, Package, System)

Ensure quality with comprehensive test, debug, repair for multi-die systems

Integrated Test for: Multiple Dies, Memories, Interconnects, and Full-system

Silicon Lifecycle Management E Reliability, Yield, Health

Failure

Analysis

Enhance multi-die system operational metrics through environmental, structural, functional monitoring

Solution Comprises: Silicon IP, EDA Software, and Analytics Insights

In-Production

Volume Test,

Quality

and Traceability

Test Access	Logic-to- Logic	Logic-to- Memory	Via / Bump / Interconnect	In-Design Power/ Performance Optimization
IEEE 1838	PHY Monitor, Test & Repair	Ext. Memory BIST & Repair	High volume Lane Test & Repair	

6

In-Field

Optimization.

Safety, Security,

Maintenance

STCO For Design And Process Optimization

Design Kits for Multi-Die Systems

C2W Cu Hybrid Bonding: Opportunities and Challenges

Thank You