

The New Challenges for Advanced Packaging Technologies

Dae-Woo Kim

May 30 – June 2, 2023 AVP TD Team, AVP Business Team

2023 IEEE 73rd Electronic Components and Technology Conference | Orlando, Florida | May 30 – June 2, 2023

AVP(Advanced Package) Business Team

Ultimate System-in-Package Provider with Flexible Service and Synergy Platform

SAMSUNG

The New Challenges for Adv. PKG Technology

More-than-Moore accelerated by Package Solutions

SAMSUNG

Improved SiP Performance (BW x Density)

- '10~'18**270**x, '18~'26~**50,000**x

· 1 Gbps-GB ('10) \rightarrow 269 Gbps-GB ('18) \rightarrow 12.6 MGbps-GB ('26)

Increased PKG Interconnection

- '10~'18 **1.2x**, '18~'26 **50x** · 5.1K('10) \rightarrow 6.2K('18) \rightarrow 3.2M('26)

3

Finer Interconnection Pitch

- '10~'18<mark>2.0x</mark>, '18~'26<mark>22x</mark> · 150µm ('10) → 90µm ('18) → 4µm ('26)

4

Emerging Chiplet Integration

Cost saving with chip Split
 Above 150mm² die @advanced node

Advanced Packaging for harsh environments

- Chiplet for Open Platform requires heterogeneous integration, standardization, SCM
- Chiplet challenges : technology convergence, high infra & PKG cost, long development time, reliability \bigcirc

Summary

- Heterogeneous integration would be the key driver for advanced package technology
 - Co-package design, synergy platform (Memory+Logic), SI/PI optimization, mechanical Simulation etc.
- Chiplet technology for open platform need to define "Standardization"
 - High infra cost & package cost, longer development time and assembly TAT.
 - Advanced package need to adopt Si FAB technology for higher interconnection.
 - Higher reliability requirement for system level integration and harsh use conditions.

Advanced Packaging and Heterogeneous Integration Roadmap for Harsh Environment – Current Status and Opportunities

Vanessa Smet Assistant Professor – Woodruff School of Mechanical Engineering Georgia Institute of Technology vanessa.smet@me.gatech.edu

jeorgia

- Increasing processing power & functional density
- Digital & memory devices require advanced technology nodes

Many Integration Platforms to Pick from

eorgia

- Rapid diversification of architectures in 2D, 2.5D and 3D, some more 'proven' than others in harsh environments
- Trade-offs in cost, feature scaling and reliability to be analyzed

How do we quickly adopt these advanced integration nodes?

The Thermal Challenge – A Key Bottleneck

jeorgia

- Thermal densification at both device and package level
- Multi-scale thermal management for heat spreading & removal

The Thermal Challenge – A Key Botteneck

• Most 'classic' solutions cannot be directly applied to automotive, e-aviation or space applications

Schematic of (a) the PCM device on board aircraft under hypergravity condition and (b) PCM melting process in different acceleration directions High (Venus) / low (Moon) temperatures

- Reliable fluid / vapor confinement
- Dry out...

Outlook on Reliability Prediction & Test Methods

• Re-qualification for use in harsh environments

- Complex / new mission profiles
- Interaction between stress loadings
- New failure mechanisms
- Test sequence
- Stretching already stretched-out integration platforms
 - Materials pushed to their limits
 - System-level reliability and yield already difficult to achieve by consumer standards
- Introduction of new technologies
 - Interconnection solution solder or else
 - Nanomaterials → cross-scale effects?
 - CTE-matched architectures

CTE reduction with Gr reinforcement of electrodeposited Cu

Lattice Parameter vs. Temperature

Next Gen Software-Defined Vehicles & Automated Driving Systems

Ramesh S General Motors R&D Warren, MI USA

- Based upon my observations
- Not the Opinion of GM
- Tried my best to quote the original source of diagrams wherever possible

- Significantly improved energy efficiency: 13% vs 76%
- In the last 3-4 years, almost all the major OEMs announced plans for major expansion in BEV portfolio
 - OEMs catered to the needs of customers and the government mandates on emissions
 - Several European countries have government set target dates to phase out ICE passenger vehicles
- EVs redefine the computations needs in automobiles with the addition of battery management (for safety and efficiency), infotainment, connectivity and autonomous driving!

BEV Truck: 3-motors

HW Architecture Evolution

- First Embedded Controllers
 - 1977 First GM production automotive microcontroller
 - Electronic spark timing
 - 1981 All GM North American vehicles use microcontroller-based engine controls
 - 3.9M vehicles total, 22K ECMs per day manufacturing rate
 - 50,000 lines of assembly code, MC6800 8-bit, 2 MHz
- Today, high end cars with advanced technology like Advanced Driver Assist System (ADAS) may contain up to 150 ECUs or more and > 150 million lines of code.
- Multidomain integrated ECUs & High-Performance Centralized Compute platforms enabled by powerful SoCs

and Technology Confere

SW Architecture evolution

- Centralized to distributed back to centralized architecture
- Middleware based architecture
- Platform based architecture
 - SW apps and services

		Adaptive Platfrom	
Operating System	OSEK OS	POSIX specification	
Communication Protocols	Signal-based Communication (CAN, FlexRay, Most)	Service- Oriented Communication (SOME/IP)	
Scheduling Mechanisms	Fixed task configuration	Dynamic scheduling strategies	
Memory Management	Same address space for applications (MPU)	r Virtual address space for each application (MMU)	

Levels of Automation in Vehicles

- SAE definition identifies 5 levels
 - Increasing degrees of automation
 - Decreasing levels of human role
- Concept of Operational Design Domain (ODD), Dynamic Driving Tasks (DDTs)
- Level 2 5: Increasing range of ODDs and DDTs
- Level 5 unlimited ODD and probably beyond all DDTs
- Industry focus has been primarily on Level
 2 4

SAE level	Name	Narrative Definition	Execution of Steering and Acceleration/ Deceleration	<i>Monitoring</i> of Driving Environment	Faliback Performance of Dynamic Driving Task	System Capability (Driving Modes)
Huma	an driver monito	ors the driving environment				
0	No Automation	the full-time performance by the <i>human driver</i> of all aspects of the <i>dynamic driving task</i> , even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a
1	Driver Assistance	the <i>driving mode</i> -specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the <i>human driver</i> perform all remaining aspects of the <i>dynamic driving task</i>	Human driver and system	Human driver	Human driver	Some driving modes
2	Partial Automation	the <i>driving mode</i> -specific execution by one or more driver assistance systems of both steering and acceleration/ deceleration using information about the driving environment and with the expectation that the <i>human</i> <i>driver</i> perform all remaining aspects of the <i>dynamic driving</i> <i>task</i>	System	Human driver	Human driver	Some driving modes
Autor	mated driving s	ystem ("system") monitors the driving environment				
3	Conditional Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene	System	System	Human driver	Some driving modes
4	High Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene	System	System	System	Some driving modes
5	Full Automation	the full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver	System	System	System	All driving modes

Copyright © 2014 SAE International. The summary table may be freely copied and distributed provided SAE international and J3016 are acknowledged as the source and must be reproduced AS-IS.

A-Z of Cruises: Road to Autonomy

Futuré

Capability Increasing

Super Cruise – Hands Free Driving Feature

STEERING

IT

LANE FOLLOWING: Using a combination of GPS and optical cameras, Super Cruise watches the road ahead and adjusts steering to keep the car in the middle of its lane.

COLLISION AVOIDANCE: A long-distance radar system detects vehicles more than 300 ft. ahead. The vehicle will automatically accelerate or apply the brakes to maintain a preset following distance.

Prevents 10 K deaths, Saves 250 Billion Dollars – Boston Consulting Co.

Level 2+ Features

- Shift in Functionality
 - From Traditional Control System Paradigm
 - Sense Control Actuate
 - To Robotics Paradigm
 - Perceive Plan Act
- Perception & Planning tasks involve AI/ML components
 - Lane and Traffic Signal Detection, 3D Object Classification
 - Path planning

Takeaways

- Large amount of Variety Electronic Assets
 - Centralized Compute Platform powered by SoC
 - Multiplicity of CPU and GPU cores
 - Variety of Sensors
 - Long and Short Range Radars
 - Number of external and in-cabin cameras
 - Lidars
 - Ultrasonic sensors
 - Interconnect Networks
 - Ethernet backbone, CAN Buses
 - Various Connectivity devices In-cabin, V2C, V2E, V2V
 - GPS, Bluetooth, In-cabin WiFi, LTE, 5G

2023 Special Session / Panel Discussion "Advanced Packaging and Heterogeneous Integration Roadmap for Harsh Environment – Current Status and Opportunities"

Ram K. Trichur, Global Head of Semiconductor Packaging Henkel Corporation

May 30, 2023

Brief Overview: Henkel Corporation

CTRONICS and Technology Conference

Overview

- Founded in 1876. HQ in Dusseldorf. Now 146 years old. ٠
- 2 Businesses Adhesive Technologies & Consumer Brands ٠
- 22.4B€ revenue in 2022.
- 53000 employees from more than 124 countries.
- Active in 78 countries. 174 production sites world wide.

Semiconductor Films

Semiconductor Encapsulants

Semiconductor Underfills

Founder

Henke

Fritz Henkel

•				
SEMICONDUCTOR PACKAGING MATERIALS	COMPONENT ASSEMBLY MATERIALS	BOARD-LEVEL ENCAPSULANTS	DEVICE ASSEMBLY MATERIALS	THERN MATE
				No. Martin
 Semiconductor Pastes 	 Component Assembly 	Board Level Encapsulants	Dispensing Equipment	· Gap F

- Adhesives
- Inks & Coatings

Our fields of expertise in electronics materials

- - Board Level Underfills
 - Conformal Coatings

- Dispensing Equipment
- Electronics Cleaners Electronics Structural Adhesives

Surface Treatment Solutions

- Instant Adhesives
- Sealants and Gasketing Materials

- Gap Pads / Sil Pads
- Gels
- Greases
- Liquid Gap Fillers
- Phase Change Materials
- Thermally Conductive Adhesives

Market Trends & Outlook for Adv. Pkg in Automotive

Source: NXP

- Overall end application revenue grows to 8.69B by 2026.
- Largest volume driver for adv. Packaging is HPC, consumer electronics & network devices.
- One of the highest growth comes from Automotive applications. CAGR_{'20-'26} is 24%.

Henke

Vehicle Architecture Transformation

ECTRONICS

The 2023 IEEE 73rd Electronic Con and Technology Conference

- Vehicle architecture transforming from distributed ECU based framework to domain/ zonal architecture to eventually central computing architecture.
- Domain cockpit controllers: With same SoC manages several displays in the car, low-level ADAS (parking, driver monitoring), comfort applications and future vehicles also new cockpit trends to include gaming.
- Central computers: Advanced HPC SoC for handling full autonomy, infotainment, networking.

Adv. Pkg Automotive Component Trends & Rel. std

Processors (Zonal / Central)

Package trends

- Heterogeneous integration, chiplet style packaging, and 3D integration.
- High I/O density. Larger chip and larger body architectures

Connectivity / ADAS / Comfort (SiP, QFN)

Package trends

- SiP Increased integration for RF front end, Higher frequency, wide band gap ICs, more heat dissipation. Higher Power, High reliability
- QFN Cu wire, Cu LF packages.

Sensors (Radar / Camera)

Package trends

- Fan-out pkg requires more integration (incl. antenna in/on package) for Radar. High reliability.
- Lower cost wafer level processing techniques for scaling for CMOS image sensors.

Automotive reliability grade and mapping

Grade	Operating temp range	Component / Operating locations
0	-40 to +150 °C	Close to engine, on engine
1	-40 to +125 °C	Under the hood or critical component
2	-40 to +105 °C	ADAS, Chassis
3	-40 to +85 °C	Infotainment, comfort, body electronics

Accelerated Environmental Stress Tests

Grade	Temp cycling conditions	High temp storage
0	-55 to +150 °C / 2000 cycles	175 °C for 1000 hrs / 150 °C for 2000 hrs
1	-55 to +150 °C / 1000 cycles	175 °C for 500 hrs / 150 °C for 1000 hrs
2	-55 to +125 °C / 1000 cycles	150 °C for 500 hrs / 125 °C for 1000 hrs
3	-55 to +150 °C / 500 cycles	150 °C for 500 hrs / 125 °C for 1000 hrs

Henke

Material	Package Requirements & Challenges (For FCBGA, 2.5D, 3D, FOWLP, SiP, QFN)
Capillary Underfill (CUF)	Needs fast flow for large die. High toughness, Low CTE for reliability. Enhanced adhesion to multiple surfaces. High thermal fillers for heat dissipation.
Lid / Stiffener attach	High adhesion to SS, Ni, SR, substrate, etc. Optimization of Modulus & Tg to enhance reliability.
Thermal Interface Materials	Higher thermal conductivity, low modulus, thinner bond lines, lower thermal resistance.
Wafer-level Encapsulation	Finer filler capability to enable fine-line RDL; Low CoO enabler like printable materials; Cu- plateable mold materials to enable AoP & passives integration.
Die Attach	Enhanced adhesion to bare Cu surfaces. Alternative fillers to mitigate dendritic growth.

Testing Challenges: In order to reduce the time required for rel. tests, special accelerated testing require materials to pass even more stringent environmental & operation conditions beyond intended use.

Ram K. Trichur Global Head of Semiconductor Packaging ram.trichur@henkel.com / +1 949 294 1201

henkel-adhesives.com/us/en/industries/electronics

