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Extreme Scale Computing

� Exascale computing identified by 
government agencies as critical 
need in 2018-2020 timeframe

� Exa refers to 1018 - one million 
trillion operations per second

� IBM top ranked system in “Top 
500” 2008/2009 - first to reach a 
peak of 1 Petaflops

• IBM’s BlueGene product family have 
consistently been dominant players 
in the “Top500” and “Green500”

• BlueGene won National Medal of 
Innovation & Technology for its 
breakthrough power/performance

What is extreme scale computing?

Ref: recent tutorial article by Josep Torrellas, “Architectures for Extreme Scale Computing,”
IEEE Computer, Nov. 2009, pp. 28-35

� The constraints are multi-
dimensional, interdependent 
and extremely hard to meet at 
affordable cost

• 20 MWatt system power

• 1 Exa-Flops sustained 
performance

• MTBF of at least two weeks, 
preferably 1 month

� Exascale demands a ~1000x 
improvement in throughput in 
10 years at a power increase 
of only ~10x

• “Business as usual” scaling is 
not sufficient

Why is it a grand challenge?
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Whole Organ Simulation

Low Emission Engine Design

Smart Grid

CO2 Sequestration

Nuclear EnergyLi/Air Batteries

Many Examples of BIG Applications that Need 
Extreme Scale Computing
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Performance Challenge of Extreme Scale Systems

Nambiar et al., TPCTC 2010, LNCS 6417, 2011

� General purpose commercial  

servers have been on a 2X 

performance every 2 years

curve 

� Special-purpose HPC 

supercomputers have been 

on a 4X performance every 2 

years curve

– HPC expected to go from 1 PF 
at 2MW in 2008 to 1 EF at 
20MW in 2018

– Requires 1000x performance 
increase at only 10x power 
increase!

– 1 EF would require about 
80,000,000 2GHz 4-way DP 
SIMD cores for sustained 
ExaFlop performance!
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IBM [BlueGene/P]

Power Challenge of Extreme Scale Systems

Oxide thickness is near the limit in late CMOS design era 
– Density improvements will continue but… power efficiency from technology will only improve very slowly.

– Historic trend of power efficiency improvement will slow

June 2009 Green 500 List:

If the world’s most power 

efficient supercomputer is 

extrapolated to a sustained 

Exaflop, power would be …

~ 2 GigaWatts

IBM has been a leader in

large systems energy
efficiency, but meeting the
Exascale goals is nothing
short of a very grand challenge!

BG/P Compute Chip, 2007

National Medal of Technology & Innovation
October 2009

Blue Gene Supercomputers 

• 4 PPC-440 cores, 850 MHz
• IBM 90nm CMOS ASIC
• 173 sq. mm.

• 208 million transistors
• 16 W

System-on-a-Chip (SoC)

France252378.779

IBM [BlueGene/P]United Arab Emirates504378.779

China1484.8379.248

Japan51.2428.917

IBM [BladeCenter QS22]DOE/NNSA/LANL (USA)2345.5444.256

IBM [BladeCenter QS22]IBM Poughkeepsie (USA)138458.334

IBM [BladeCenter QS22]DOE/NNSA/LANL (USA)276458.334

IBM  [QPACE]Germany59.49722.981

IBM  [QPACE]Germany59.49722.981

IBM  [QPACE]Germany59.49722.981

BrandSupercomputer 
Location

KiloWattsMFLOPS
per Watt

Rank

Data from: http://www.green500.org
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13.6 GF/s
8 MB EDRAM

4 processors

1 chip, 20 
DRAMs

13.6 GF/s
2.0 GB DDR2

(4.0GB is an option)

32 Node Cards

13.9 TF/s
2 TB

72 Racks

1 PF/s
144 TB 

294,912 
processors

Cabled 8x8x16
Rack

System

Compute Card

Chip

435 GF/s
64 GB 

(32 chips  4x4x2)
32 compute, 0-1 IO 

cards

Node Card

BlueGene/PBlueGene/P

BG/P Compute Chip

• 4 PPC-440 cores

• 850 MHz

• IBM 90nm ASIC

• 173 sq. mm.

• 208 M transistors

• 16 Watt
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BG/P System Power Breakdown

� System power components

– Cooling fans, water pumps and compressors

– Voltage conversion and distribution loss

– Computation, communication and storage

Air + Water Cooling
(Rack HE + System Chiller)

Cooling
21%

Conv
21%

Compute
58%

Air + Water Cooling
(Rack HE +System HE)

Cooling
9%

Conv
24% Compute

67%

Air Cooling

Cooling
30%

Conv
19%

Compute
51%

BG/P System Power Breakdown Running Linpack

(Room AC)
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Challenging Road to Exascale
� Technology improvements slowing down

– Significant gap between ideal and expected

– Will not take us to Exascale in 2018 timeframe

0.001

0.01

0.1

1

10

90 8Technology Node

E
x

a
fl

o
p

s
p

e
r 

2
0
 M

W

Ideal Expected Desired

Gap to be filled 
by new 

architecture, new 
memory 

configurations, 
optics, etc.
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be cost-
effective!

� Significant design innovation required to reach Exascale

– New processor architectures and memory configurations

– Improved modeling and design optimizations

– New power management techniques

– Optics pervasive on board/module/chip
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Broad Attack on the Power Front
Area & Power Reduction for BGQ PU core
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chip-level microarchitecture modeling

Substrate Processor Simulator

Power Reduction via Design Time Modeling

Power Modeling
Enhancements

Temperature
Modeling

Uniprocessor CPI and 
Power sensitivities

Package RLC models,
Ldi/dt analysis

PowerTimer: core-level modeling

Reliability Modeling

Multi-Core Power-
Performance Modeling

VALIDATION

System interconnect and tech.
scaling parameters, models

Latch-counts + array power models

Latch-counts + scaled CPAM based 
models + refined array power models

Trace/exec driven simulation

To Interconnect

Layer Thermal Model

Heat Sink Silicon Die

Heat Spreader

Thermal Interface Material

Fin-to-air convection thermal resistor

L2

C7

L2

C0

L2L2

C
4

CCC
8

Data from 
device and 

circuit 
level

Program 
traces

Architectural
derating factor

Cycle acc.
Processor
Simulator

Soft 
error
model

microarch design

and definition

(ref: IBM Journ. R&D, Sep/Nov 2003)
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Year of Announcement
1960 1970 1980 1990 2000
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Active Power Reduction via Concurrency

� Power = C * V2 * F

� A key principle for high performance in 
large-scale parallel HPC systems

� Cost constraint for exascale-regime 
systems implies

– Manageable number of compute nodes 
� dozens of cores/chip

� Also, must not forget the serial (Amdahl)

component of HPC codes!

0.3x0.3xFrequency

4-10x50xDensity

0.1x0.07xPower

CMOS����3DBipolar����CMOS

� 3D Many-Core solutions key to 
extreme concurrency

– 4-10 high chip stacks possible with 
advanced packaging solutions

Ack: Shekhar Borkar, Intel, 2005 conf. talk
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Power Reduction via Dynamic Resource Management

� High power systems require 

dynamic management capability

• Power Shifting across compute, 

communication and storage to avoid 

power overrun

• Also provides energy efficiency by 

powering down unused components
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Application Phases

Compute Storage Communication

� Workloads operate in phases that 

utilize system resources differently
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Concluding Remarks

� The Power Wall is a key impediment to realization of 

extreme scale computing targets of the future

– Extreme scale computing challenged by diminishing 

performance and power benefits from technology scaling

– Significant innovation in low power design and dynamic 
power management required throughout the system

– Modeling accuracy is more stringent than ever because of 

the implications of the huge scale of the system

– Innovation required also in cooling and voltage regulators


