

T.J. Watson Research Center

Power Challenges in Extreme Scale Computing

Hans Jacobson

IBM T. J. Watson Research Center hansj@us.ibm.com

ECTC Plenary Session - June 1, 2011

Extreme Scale Computing

What is extreme scale computing? Why is it a grand challenge?

- Exascale computing identified by government agencies as critical need in 2018-2020 timeframe
- Exa refers to 10¹⁸ one million trillion operations per second
- IBM top ranked system in "Top 500" 2008/2009 - first to reach a peak of 1 Petaflops
 - IBM's BlueGene product family have consistently been dominant players in the "Top500" and "Green500"
 - BlueGene won National Medal of Innovation & Technology for its breakthrough power/performance

- The constraints are multidimensional, interdependent and extremely hard to meet at affordable cost
 - 20 MWatt system power
 - 1 Exa-Flops sustained performance
 - MTBF of at least two weeks, preferably 1 month
- Exascale demands a ~1000x improvement in throughput in 10 years at a power increase of only ~10x
 - "Business as usual" scaling is not sufficient

Ref: recent tutorial article by Josep Torrellas, "Architectures for Extreme Scale Computing," *IEEE Computer, Nov. 2009, pp. 28-35*

Many Examples of BIG Applications that Need Extreme Scale Computing

Whole Organ Simulation

Smart Grid

Drivers: Dri

Nuclear Energy

Tumor Modeling

- INCITE 2006-2007 technologies now being applied to next generation low emission engines.
- Important simulations can now be done 3X faster
 A key enabler for the depth of understanding meet emissions goals

Low Emission Engine Design

CO₂ Sequestration

Performance Challenge of Extreme Scale Systems

- General purpose commercial servers have been on a 2X performance every 2 years curve
- Special-purpose HPC supercomputers have been on a 4X performance every 2 years curve
 - HPC expected to go from 1 PF at 2MW in 2008 to 1 EF at 20MW in 2018
 - Requires 1000x performance increase at only 10x power increase!
 - 1 EF would require about 80,000,000 2GHz 4-way DP SIMD cores for sustained ExaFlop performance!

Power Challenge of Extreme Scale Systems

Oxide thickness is near the limit in late CMOS design era

- Density improvements will continue but... power efficiency from technology will only improve very slowly.
- Historic trend of power efficiency improvement will slow

Rank	MFLOPS per Watt	KiloWatts	Supercomputer Location	Brand
1	722.98	59.49	Germany	IBM [QPACE]
1	722.98	59.49	Germany	IBM [QPACE]
1	722.98	59.49	Germany	IBM [QPACE]
4	458.33	276	DOE/NNSA/LANL (USA)	IBM [BladeCenter QS22]
4	458.33	138	IBM Poughkeepsie (USA)	IBM [BladeCenter QS22]
6	444.25	2345.5	DOE/NNSA/LANL (USA)	IBM [BladeCenter QS22]
7	428.91	51.2	Japan	
8	379.24	1484.8	China	
9	378.77	504	United Arab Emirates	IBM [BlueGene/P]
9	378.77	252	France	IBM [BlueGene/P]

June 2009 Green 500 List: If the world's most power efficient supercomputer is extrapolated to a sustained Exaflop, power would be ...

2 GigaWatts

Data from: http://www.green500.org

BG/P Compute Chip, 2007

System-on-a-Chip (SoC)

- 4 PPC-440 cores, 850 MHz
- IBM 90nm CMOS ASIC
- 173 sq. mm.
- 208 million transistors
- 16 W

TRM

Blue Gene Supercomputers

National Medal of Technology & Innovation October 2009

IBM has been a leader in large systems energy efficiency, but meeting the Exascale goals is nothing short of a *very* grand challenge!

BlueGene/P

Cabled 8x8x16 Rack

> 13.9 TF/s 2 TB

32 Node Cards

1 PF/s 144 TB

294,912 processors

Node Card (32 chips 4x4x2) 32 compute, 0-1 IO cards

Compute Card 1 chip, 20 **DRAMs**

> 435 GF/s 64 GB

Chip 4 processors

> 13.6 GF/s 8 MB EDRAM

13.6 GF/s 2.0 GB DDR2 (4.0GB is an option)

BG/P Compute Chip

- 4 PPC-440 cores
- 850 MHz
- IBM 90nm ASIC
- 173 sq. mm.
- 208 M transistors
- 16 Watt

BG/P System Power Breakdown

- System power components
 - Cooling fans, water pumps and compressors
 - Voltage conversion and distribution loss
 - Computation, communication and storage

BG/P System Power Breakdown Running Linpack

7 Hans Jacobson, ECTC-2011 © 2011 IBM Corporation

Challenging Road to Exascale

- Technology improvements slowing down
 - Significant gap between ideal and expected
 - Will not take us to Exascale in 2018 timeframe
- Significant design innovation required to reach Exascale
 - New processor architectures and memory configurations
 - Improved modeling and design optimizations
 - New power management techniques
 - Optics pervasive on board/module/chip

Broad Attack on the Power Front

H Jacobson et al. HPCA-17, 2011

Power Reduction via Design Time Modeling

Hans Jacobson ECTC-2011 © 2011 IBM Corporation

Active Power Reduction via Concurrency

- Power = C * V² * F
- A key principle for high performance in large-scale parallel HPC systems
- Cost constraint for exascale-regime systems implies
 - Manageable number of compute nodes
 → dozens of cores/chip
- Also, must not forget the serial (Amdahl) component of HPC codes!

	Bipolar→CMOS	CMOS→3D
Power	0.07x	0.1x
Frequency	0.3x	0.3x
Density	50x	4-10x

- 3D Many-Core solutions key to extreme concurrency
 - 4-10 high chip stacks possible with advanced packaging solutions

Hans Jacobson ECTC-2011 © 2011 IBM Corporation

Power Reduction via Dynamic Resource Management

 Workloads operate in phases that utilize system resources differently

- High power systems require dynamic management capability
 - Power Shifting across compute, communication and storage to avoid power overrun
 - Also provides energy efficiency by powering down unused components

Hans Jacobson, | ECTC-2011 © 2011 IBM Corporation

Concluding Remarks

- The Power Wall is a key impediment to realization of extreme scale computing targets of the future
 - Extreme scale computing challenged by diminishing performance and power benefits from technology scaling
 - Significant innovation in low power design and dynamic power management required throughout the system
 - Modeling accuracy is more stringent than ever because of the implications of the huge scale of the system
 - Innovation required also in cooling and voltage regulators

Hans Jacobson ECTC-2011 © 2011 IBM Corporation