

Power Efficient Bandwidth Delivery for the Data Center

Randy Mooney

US Power Consumption from Data Centers

Source: EPA Report to Congress on Server and Data Center Energy Efficiency; August 2, 2007

2007 Report to Congress highlighted the potential problems from growth in Data Center demand.

Power Breakout

Circa 1990 - 2005

Today's New Data Centers

Concentrate future power reduction on core IT

Intel Optimization Approach

Optimized Silicon

Low voltage processors Tailored SKUs Efficiency features

Optimized Technologies

Power Management Security Technologies Solid State Drives Advanced Networking

Software Optimization

Parallelism Scalability Configurations Manageability

Optimized Systems

Optimized boards
System tuning
Rack optimization
Power tuning

Datacenter Optimization

Floor Plan
Aisle Layout
Integration
Operating Conditions

Efficiency Losses Cascade

Building with Today's Technology

TFLOP Machine today

Decode and control Translations ...etc Power supply losses Cooling...etc

10TB disk @ 1TB/disk @10W

100pJ com per FLOP

0.1B/FLOP @ 1.5nJ per Byte

200pJ per FLOP

The Power & Energy Challenge

Microprocessor Bandwidth Trends

Bandwidth Drivers:

CPU↔Memory CPU↔CPU CPU↔Peripheral CPU↔I/O bridge

Most apps <1m length

High-end microprocessors expected to need ~1TB/s by 2020

Trends in I/O Power vs. Year*

Issue: ~20% per year power reduction while bandwidth increasing ~2x every 3 years

*Non-scientific sample of top-tier peer reviewed publications

Ideal Interconnect

- BW scalable across 3 platform generation minimum
- Best possible power efficiency
- Reconfigurable to fit multiple channel types
- Scalable bandwidth/power
- Fast entry/exit to/from lowest power state
- High density
- Distance solution

Evolutionary Interconnects: PCI-E Example

Conventional electrical interconnects nearing EOL Using all evolutionary improvements may buy a generation Now is the time to make a break to a scalable solution

Possible BW Solutions

Advanced Electrical Interconnects

Optical Interconnects

New technologies emerging
None of them solve the whole problem

<u>Use all of these in optimal/innovative combinations</u>

Electrical/Optical Power Comparison

Normalized Optical & Electrical Power Efficiency vs. Data Rate

Interconnect Loss @ Data rate (dB)
(Based on transceivers reported
2006-2009 in 65-130nm CMOS)

Optical
Module

- Increased bandwidth means increasing I/O data rates
- ·Interconnect loss increases with data rate and distance
- Need elect interconn to optical modules, so no cross-over
- Moving bits across distance costs power

Hybrid Stacked DRAM

- DRAM stacked with CPU
 - Works great for low power SOC
 - Severe thermal and power delivery challenges for high power processors
- So... Stack DRAM with a dedicated logic chip
- DRAM die optimized for:
 - Memory density, static power, cost
- LOGIC die:
 - Optimized for logic density, active power, performance
 - Offload clocking, I/O, logic from DRAM
 - High BW with good power efficiency
 - Enables "smart" memory
 - Interface more appropriate for CPU
- Wide, slow interface to DRAM, serialize in logic buffer

Compact the Platform

Interconnect Density and Data Rate

Significant density increase

Scalable pin data rate to >32Gb/s

Use short, dense electrical interconnects for most cases

Cabled Interconnects

MS Server

HE HPC

Non-Traditional Interconnects

Flex

Channel Capacity vs. Distance

- Traditional interconnects limited to ~10-18Gb/s
- Top-of-package, cabled interconnects provide scaling to ~35Gb/s limited by packages, connectors etc.
- ·Research focused on achieving cable only capacity

Photonics System

- Distance solution
- · Use when needed

Summary

- Microprocessor I/O performance and power must scale
- Traditional interconnects nearing EOL
- 3D technology and dense interconnects compact the platform
- Short, dense electrical interconnect have high scalability
- Cabled electrical interconnect for medium distance also scale
- Electrical I/O research focused on realizing total available cable BW of 64Gb/s or greater
- Utilize active optical cables for distance > ~1m

