62nd ECTC – San Diego, CA: May 29 – June 1, 2012

The Low Warpage Coreless Substrate for High Speed Large Size Die Packages

Masateru Koide Device Packaging Technology Dept. Fujitsu Advanced Technology Ltd.

FUJITSU

- 1. Introduction
- 2. Targets of Development
- 3. Warpage Control Method Development
 - 1. Coreless Substrate
 - 2. Package Assembly
 - 3. Board Mounting
- 4. Conclusion

1. Introduction

Fujitsu's Technologies

- -102 processors are installed in a rack
- $-32 \times 24 = 864$ racks are installed Installed Area: $36m \times 38.4m$
- -88,128 CPUs (705,024cores)

Super Computer Ranking

					\\
Rank	Site	Computer/Year Vendor	Cores	R _{max} [Pflops]	Power [MW]
1	RIKEN Advanced Institute for Computational Science(AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect / 2011	705,024	10.510	12.660
	- The state of the	Efficiency ratio93.2% / 88,128	BCPU .		
2	National Supercomputing Center In Tianjin China	NVIDIA GPU, FT-1000 8C / 2010 NUDT	186,368	2.566	4.040
3	DOE/SC/Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron 6-core 2.6 GHz / 2009 Cray Inc.	224,162	1.759	6.951
4	National Supercomputing Centre in Shenzhen (NSCS) China	Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU / 2010 Dawning	120,640	1.271	2.580
5	GSIC Center, Tokyo Institute of Technology Japan	TSUBAME 2.0 - HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows / 2010 NEC/HP	73,278	1.192	1.398
6	DOE/NNSA/LANL/SNL United States	Cielo- Cray XE6 8-core 2.4GHz / 2011 Cray Inc.	142,272	1.110	3.980
7	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX/8400EX, Xeon HT QC 3.0/Xeon 5570/5670 2.93 Ghz, Infiniband / 2011 SGI	111,104	1.088	4.102
8	DOE/SC/LBNL/NERSC United States	Hopper - Cray XE6 12-core 2.1 GHz / 2010 Cray Inc.	153,408	1.054	2.910
9	Commissariat a l'Energie Atomique (CEA) France	Tera-100 - Bull bullx super-node S6010/S6030 / 2010 Bull SA	138,368	1.050	4.590
10	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2009 IBM	122,400	1.042	2.346

Source: 37th TOPSOOLIST (www.tops00.org

1. Introduction

CPU Package Outline

- PKG Size 55.5 × 55.5 mm
- Cu-LID Size
 45.0 × 45.0mm
- BGA 2408pin
- Heat resistance 0.06℃/w

May 31, 2012

and Technology Conference

Coreless Issue

	Cost	Miniaturization	Inductance	Assembly
Coreless	0 0		0 0	0 0
Conventional	0 0	• •	• •	0 0

Why is not Coreless popular?

May 31, 2012

- 1) CTE mismatch and Low Young's modulus of package substrate material
- 2) Package assembly technique
- 3) Board mount reflow temperature

Development Target

Warpage control technique

- Coreless Substrate Structure
 Material composition and Structure control
- 2. Package Assembly Warpage Correction control
- 3. Board mounting Reflow Temperature control

Development Target

Warpage control technique

- 1. Coreless Substrate

 Material composition and Structure control
- 2. Package Assembly Warpage Correction control
- 3. Board mounting Reflow Temperature control

Warpage Improvement Method

Using an insulating material with a small CTE mismatch

We use prepregs

General Material Combination

Resin = 35ppm/°C Cu = 17ppm/°C

Our Material Combination

Prepreg = $15ppm/^{\circ}C$ \longleftrightarrow $Cu = 17ppm/^{\circ}C$

CTE mismatch decreased to 1/9 by prepreg application.

Coreless substrate with all prepreg layers exhibits smaller warpage

Masateru Koide May 31, 2012

Problem of Prepreg in Transmission

Properties	Prepreg	Resin
CTE(@R.T.)	15ppm/°C	35ppm/℃
CTE mismatch with Cu	Small	Large
Warpage	Exellent	Poor
Transmission Property	Poor	Exellent

Coreless substrate with all prepreg layers is inferior to transmission property.

Necessary to reduce the prepreg consumption as much as possible, and to control a warpage.

FUJITSU

3. Experimental Methods

Low warpage and High Trans. Quality

2. Arrangement of resins in *internal* layers.

Skew less transmission property

We propose the coreless structure with external

prepregs and internal resins.

Masateru Koide FUJIISU -1

Layer Structures of Prepared Corelss

PP

1. All-PP

2. Outer-PP

3. Inner-PP

PP

4. None-PP

PP

Cross-sectional view confirms the PP arrangement difference

Lovon		Layer Structure			
Layer	All-PP	Outer-PP	Inner-PP	None-PP	
V 2	$\left\langle \right\rangle$	\bigcirc			
V 3	$\langle \rangle$	\bigcirc	\bigcirc		
V 4	$\langle \rangle$		\bigcirc		
V5	\bigcirc		\bigcirc		
V6	\bigcirc				
V7	\bigcirc				

PP layer

Small CTE mismatch Resin layer

Large CTE mismatch

4. Results

and Technology Conference

Warpage Measurement Results

We succeeded in reducing the warpage with Outer-PP structure.

Development Target

Warpage control technique

- 1. Coreless Substrate
 Material composition and Structure control
- 2. Package Assembly Warpage Correction control
- 3. Board mounting Reflow Temperature control

Package Substrate Warpage

Fig.1 Comparison of LSI area warpage in Each substrate type

Stiffener Assembly Process

< Controlling parameters on Stiffener assembly>

Need for process optimization

Masateru Koide FUJITSU --18

Process Optimization

Fig.4 Substrate type and warpage

Optimization of the warpage controlling

Reliability Test Result

Test conditions

Thermal Cycle	-25/+125(cel) 1,000cycles
LSI Size	20mm square, 0.15mm thick
Substrate Size	42.5mm square, 0.3mm thick

20 test pieces were prepared

Pass conditions

Less than twice of the initial resistance

Test results

Sample	1000cycle Reliability Test	
All-PP	Passed	
Outer-PP	Passed	
Inner-PP	Failed	
None-PP	Failed	

Effective factors for reliability

- 1. The warpage value at maximum temperature
- 2. The temperature dependent warpage in cooling process.

Reliability Test Result

FUJITSU

Development Target

Warpage control technique

- 1. Coreless Substrate
 Material composition and Structure control
- 2. Package Assembly Warpage Correction control
- 3. Board mounting Reflow Temperature control

FUJITSU

Adopting Low-Temperature Soldering

Reflow Temperature

The 62nd Electronic Components and Technology Conference

Candidates of Low-Temperature Solder

Eutectic Composition(mass%)	Melting point (°C)		Price
In-3Ag	144.0	Good	Expensive
Sn-58Bi(-1Ag)	138.0	Good	Reasonable
In-48Sn	120.0	Good	Expensive
In-34Bi	72.7	Too Low	Expensive

FUĴĬTSU

-24-

Issues of Sn-Bi eutectic Solder

Mechanical Characteristic

Bi : Hard / Brittle

Less Ductility

High Strain Rate Deformation

Brittleness Destruction

Shock Resistant Lifetime Shortening

Temporal Change

Stability Concern under High Temperature Operation

Coarsening of metallographic structure

Growth of reaction layer in the bonded interface

Improvement by Third element addition

FUJITSU

Charactristic Sn-Bi-Sb-Zn

Texture Miniaturization and Ductility improvement by Sb

Conventional Sn-Bi Solder

Developed Solder

10 µ m

Test Temp. : Room Temp.

The 62nd Electronic Components and Technology Conference

FUJITSU

Charactristic Sn-Bi-Sb-Zn

Inhibition of Bi-rich layer constitution, interfacial reinforcement by Zn

Joint Reliability was Successfully improved

Conclusion

- The most effective structure to reduce warpage in our study was the application of prepreg materials only in both external layers.
- **■** For Coreless Substrate structure, Stiffener assembly materials and appropriate processes enabled the same assembling level as conventional organic substrates.
- **New Composition of Sn-Bi-Pb-Zn Solder enabling Low** temperature reflow that realize low-reflow warpage.

Daisuke Mizutani (Material Analysis)

Mamoru Kurashina (Material Analysis)

Seiki Sakuyama(Material Development)

Kenji Fukuzono (Package Structure Analysis)

Manabu Watanabe(Board Level Reliability)

shaping tomorrow with you