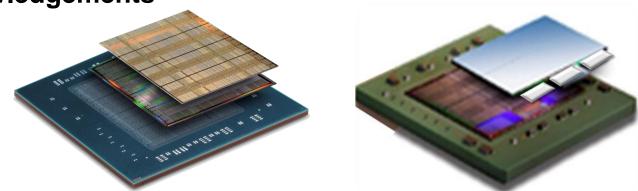
2014 CPMT Seminar

Latest Advances in Organic Interposers

3D-ICs: Advances in the Industry

Suresh Ramalingam


Advanced Packaging, Xilinx 2100 Logic Drive, San Jose, 95124 **XILINX**.

IEEE 64th ECTC – Orlando, FL, USA

May 27-30, 2014

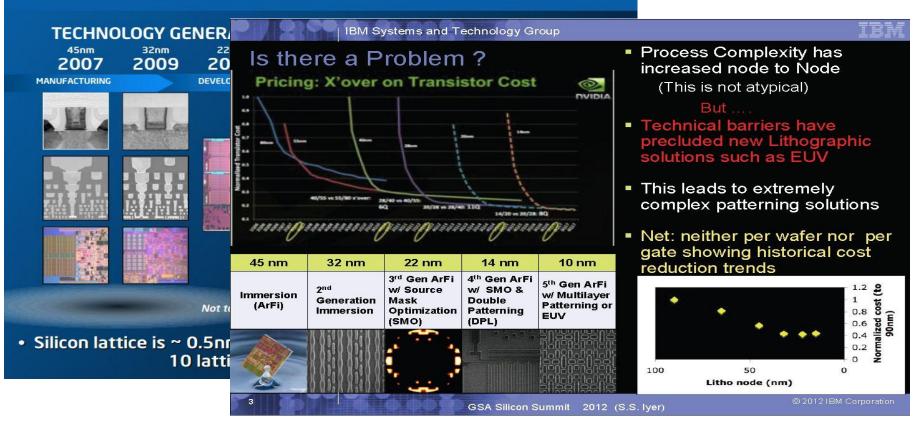
Outline

- > 3D IC Background
- > 3D IC Technology Development
- Summary
- > Acknowledgements

Stacked Silicon Interconnect Technology refers to Xilinx 3D solutions

XILINX

3D IC Background

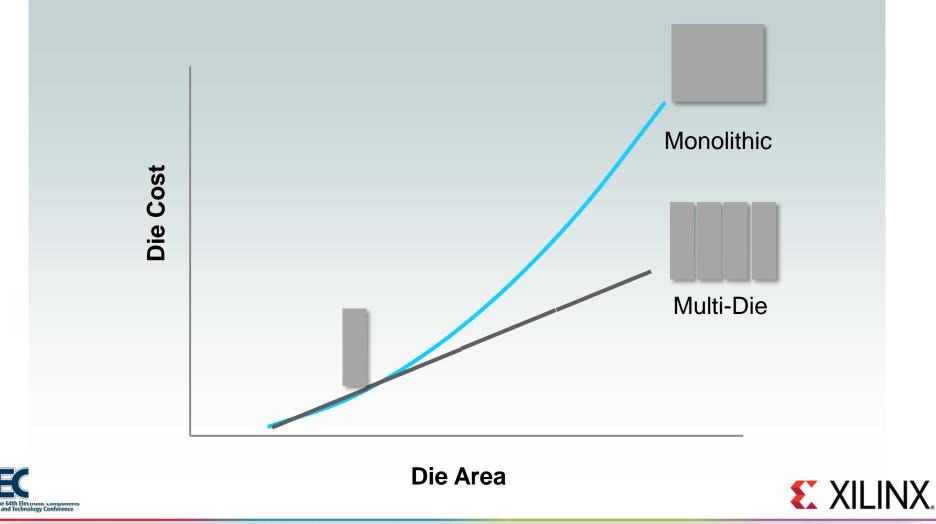


XILINX.

IEEE 64th ECTC – Orlando, FL, USA

Technical Challenges & Costs Are Growing

Our visibility always ~10 yrs - need broad exploration


> Process Technology Path Below 10nm is unclear

Cost Reduction Slowing from Complexity / Investment Increases

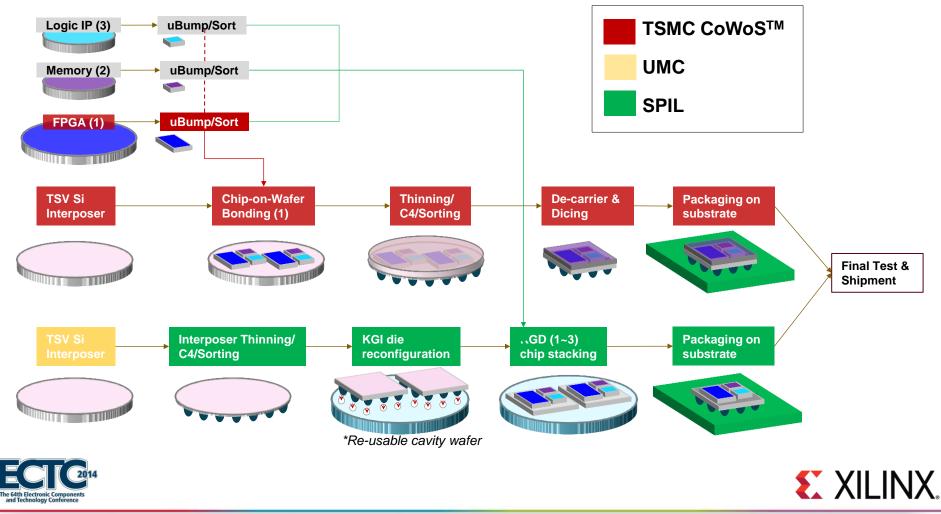
Cost Per Wafer & Cost Per Gate Deviating from Historical Reduction

3DIC Extends Moore's Law *Cost Comparison: Monolithic vs. Multi-Die*

"Moore's Law is Really About Economics" – Gordon Moore

Design Rule Comparison

Design Rules for Die to Die interconnection	MCM (Substrate)	MCM with Silicon Bridge	Silicon Interposer (65 nm BEOL)	WLFO / Organic Interposer
Minimum Bump pitch (um)	150 (C4)	150 (C4) 40 (u-bump) bridge	< 40 (u-bump)	40 um RDL pad pitch
Via size / pad size (um)	60 / 90	0.4 / 0.7	0.4 / 0.7	10/30
Minimum Line & Space (um)	15 / 15	0.4 / 0.4	0.4 / 0.4	3/3
Metal thickness (um)	10	1	1	2-5
Dielectric thickness (um)	30	1	1	< 5
# of die-to-die connections per layer + GND shield layer (2L)	100's	10,000's	10,000's	1000's
Minimum die to die spacing (um)	4000	Bridge ~ 2500	150	< 250
# of High density layers feasible	Not a limitation	Not a limitation	Not a limitation	1-3L layers
Die Sizes for assembly and # of assemblies	Not a concern	Size & # limitation?	Not a concern	Size limitation?


ECCICe14 The 64th Electronic Components and Technology Conference Xilinx pursuing Silicon Interposer for design rule density, BW and lower power – e.g. die partition

IEEE 64th ECTC – Orlando, FL, USA

E XILINX

Supply Chain

- > TSMC CoWoS in production
- > Readying UMC/SPIL as additional source. Completed technology qualification

Xilinx 28nm 3DIC – Huge Leap in Innovation

Earth

Area: ~500 Million km² Population: ~6.8 Billion People Oceans: 5

Interposer Area: ~775 mm² Population: ~6.8 Billion Transistors Chips: 5

Virtex-7 2000T

136 Patents Awarded Worldwide 226 Pending Applications Worldwide

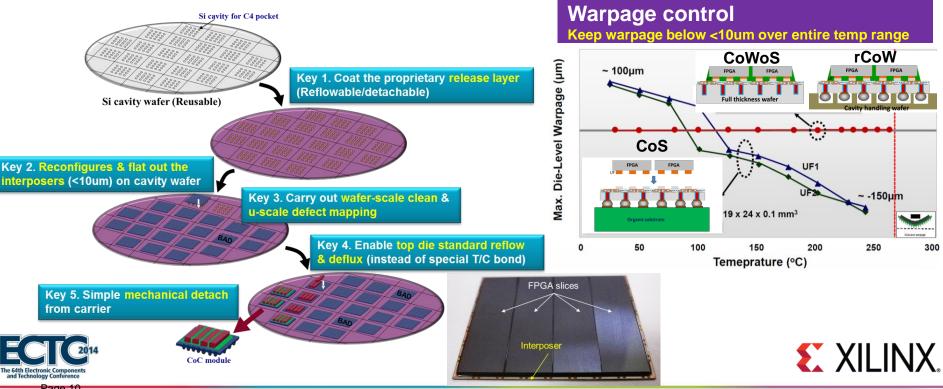
IEEE 64th ECTC – Orlando, FL, USA

May 27 – 30, 2014 8

3D IC Technology Development

IEEE 64th ECTC – Orlando, FL, USA

Suresh Ramalingam


Critical Challenge: Warpage Control

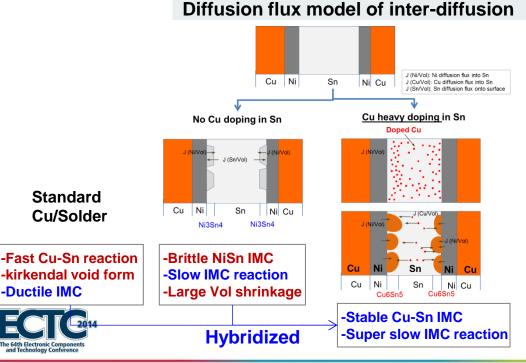
CoWoS Technology

 Top dies are attached to full-thickness interposer wafers thus getting around the thin interposer warpage and poor micro-bump joining problem

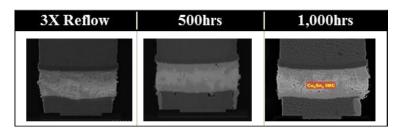
Reconfigurable CoW (rCoW) Technology

- Xilinx patent issued worldwide (US/TWN/CN/EU/IND/JPN/KR)
- Release layer approach that withstands reflow & maintains low warpage

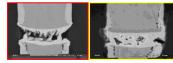
IEEE 64th ECTC – Orlando, FL, USA


HTS Aging Reliability Issue

> Voiding or crack in micro-joint during long term stress (HTS in particular)


- Due to limited Sn source and its dual consumption rate from top and bottom pad.

> Resolution : Heavy Cu doping into LF solder cap (with Ni barrier layer)


- Take advantages of ductile IMC (Cu-Sn) and slower IMC reaction (Ni with Cu-Sn IMC)
- Passed 3X reflow + 150°C aging condition for > 1000 hrs
- Xilinx X-4281 patent pending

HTS aging performance

*Reference images (from no-doping u-bump)

IEEE 64th ECTC – Orlando, FL, USA

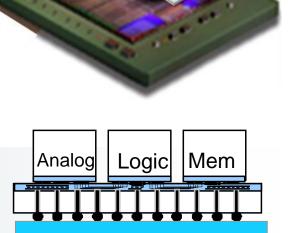
3D IC Technology Landscape

	Chip level	Device level	W2W C2W level		
Players	Samsung DRAM / Hynix NAND & DRAM / IBM / Micron / Elpida / Qualcomm / Nokia	Samsung Vertical-Gate NAND/ Besang / Monolithic 3D IC / Stanford	SONY (Stacked CIS) / Tezzaron / Ziptronix/ MIT Lincon Lab		
TSV size	5~10um	0.5~2um contact through oxide	2~5um in diameter		
TSV pitch	30~50um	1~4um (not limited)	5~10um		
TSV count	1k~5k	Not limited	Not limited		
Key features	<complex-block></complex-block>	<figure></figure>	<complex-block></complex-block>		

IEEE 64th ECTC – Orlando, FL, USA

The 64th Electronic Component

IEEE 64th ECTC - Orlando, FL, USA


Economic and technology forces are aligned to enable 2.5D/3D stacking

TSV and 3D stacking already deployed in Smartphones, High end FPGAs & Servers

The "end game" will see three distinct technologies: Logic, Memory, Analog

Suresh Ramalingam

Acknowledgements

Xilinx

- R&D, NPI & Operation Teams

Partners

- TSMC R&D and Production Teams for FPGA, CoWoS
- UMC for Interposer
- SPIL R&D for MEOL and Advanced Packaging
- Fujitsu Interconnect Technology for High Speed Substrates

