

Silicon-photonics-based optical transceivers for high-speed interconnect applications

Peter De Dobbelaere Luxtera Inc.

05/31/2016

Luxtera Proprietary

www.luxtera.com

Overview

- Applications and Trends in Optical Interconnect
- Silicon Photonics Technology:
 - Wafer processing
 - Light Source for Silicon Photonics
 - Integration with Electronic Circuits
- Wafer Level Packaging:
 - Optical and Electrical Probe
 - Wafer Bumping
 - Wafer Level Assembly & Test
- Transceiver Module Assembly + Examples
- Technology Outlook

Growth of Cloud Service vs Enterprise

Server Shipments

Web/Cloud:

- Computing is the business: Datacenter = "Computing Factory"
- ~50% of servers in 2018 (E)
- Small number of large-scale web/cloud service providers

Cloud Computing increases rapidly and takes market share of Enterprise Computing

Hyperscale Cloud Service is very different from Telecom:

- Rapid growth: Quickly drive large volumes
- Drive technology: Adopt newest technologies to meet their business needs
- Refresh equipment every 3-4 years ("crop-rotation")
- $\bullet \quad \text{Drive re-use datacenter infrastructure (e.g. fiber plant, cooling,...)} \\$

Datacenter Optical Infrastructure (Public information Microsoft)

Optical interconnect technology:

- Inside the rack: stay electrical for now
- TOR-LEAF: Can be AOC (technology independent)
- L > 20 m: Single-Mode Fiber

Single mode fiber (SMF):

- Fiber infrastructure can be reused when data rate scales up
- Fiber cost lower, optical connector cost higher

High-Speed Interconnect Trends: Higher Density

Data streams limited at 2 levels:

- ASIC: number of electrical I/Os limited by packaging constraints
- Shelf: front plate density limited by size of optical modules

How to resolve?

- Increase bit/baud rate: 10 Gbps -> 25 Gbps -> 56 Gbps
- Use **embedded optics** (e.g. COBO MSA initiative)
 - Transceivers internal to shelf (instead of z-pluggable modules on face plate)
 - High density optical connectors at face plate
- Longer term: Integrate high density optical I/O with ASIC allowing higher density (MCM or photonic interposer)

High-Speed Interconnect Trends: Closer to the ASIC

Silicon Photonics Wafer Processing

Wafer processing:

- Silicon on Insulator substrate (SOI)
- Litho and etch of photonic structures
- Implants for active devices
- Selective Ge epitaxy for photo-detectors
- Standard BEOL

200 & 300 mm processes in two fabs:

- Monolithic or hybrid integration of photonics with electronics
- Qualified device libraries

Light Source for Silicon Photonics: LaMP

- Most transceiver applications need the light source to be integrated inside the module
- Si Photonics offers ability of using a remote light source
- Standard InP laser diode in a silicon micro package (incorporates many "lessons learned"):
 - Use mature InP laser diode technology
 - Include an optical isolator in the system
 - Use efficient coupling scheme
 - Wafer level assembly, packaging burnin and test
- Several versions developed:
 - 1490 nm standard power
 - 1490 nm high power
 - 1310 nm high power

Integration Photonics & Electronics

Monolithic Integration

- Single chip solution
- Lower parasitics between photonics and electronics
- More complex wafer fabrication process
- Less area efficient
- Moving to advanced nodes is complicated & very expensive

Monolithic SiP IC Electronics + Photonics

Hybrid Integration

- Multi chip solution
- Higher parasitics between photonic and electronics
- Photonics & electronics fabrication processes decoupled
- Efficient use of area: photonics doesn't take area on (expensive) advanced e-node
- Flexible electronic node selection (CMOS, BiCMOS,...), enabling integration with 3rd party IP

Manufacturing flow for wafer level assembly & test

Wafer Scale Assembly: Chip to wafer bonding of electronic IC

- Technology developed by multiple OSATs
- Leverages technology developed for semiconductor electronics industry
- Enables electrical interconnect:
 - High density: pitch ~ 50 micron
 - Low parasitics
 - Wafer level assembly & test

Wafer Scale Assembly: Light Source to Wafer Bonding

- Based on commercial pick-and place tool
- High throughput thanks to:
 - Fast active alignment
 - Fast adhesive curing
 - Wafer level assembly
- Built-in process monitoring

Wafer Level Assembly allows full optical BIST of transceiver engine

Optical & Electrical loop backs:

Hybrid Architecture and Wafer Level Optical Assembly allow greater overall test coverage

- Electrical & Optical sort performed on photonics die
- Electrical sort performed on electronics die Isolated testing of key analog blocks
- Final CoC assembly electrical testing with laser power

• High-Speed Electrical loopback

- Internal PRBS generation on TX
- Loopback at E/O interface back to TIA/LA on the RX
- Internal PRBS checker on the RX

• Hight-Speed Optical loopback

- Internal PRBS generation on TX
- Loopback on optical interface back to replica PD and TIA on RX
- Internal PRBS checker on the RX

4x26 Gbps PSM-4 Chipset & QSFP28 Module

Chipset mounted on PCBA:

- Si Photonics IC (1310 nm)
- Electronic IC (TSMC 28 nm)
- Single light source (1310 nm)

Wire bonding for electrical connections:

- High-speed differential pairs
- Power & ground
- Low-speed communication

8x28 Gbps PSM-8 Chipset & 200 Gbps Module

Chipset mounted on PCBA:

- Si Photonics IC (1310 nm)
- Electronic IC (TSMC 28 nm)
- Single light source (1310 nm)

Wire bonding for electrical connections:

- High-speed differential pairs
- Power & ground
- Low-speed communication

Data rate scaling: 100 G, 200 G, 400 G,...

Continued demand for increased data rates

- 400 G Ethernet
- 200 G Ethernet
- 50 G Ethernet

Data rate scaling vectors

Trade-offs:

- Cost
- Power dissipation
- Link budget margin
- Scalability

Silicon Photonics Technology

Technology platform:

- Higher raw data rate: Library development for 56Gbps NRZ and advanced modulation:
 - o >50 GHz BW photo-detectors
 - o < 2 V.cm modulators
 - General loss reductions
- Higher density: WDM, advanced modulation, multi-core fiber
- Integration with Electronics/ASICs by 2.5 D integration

Advanced System and Circuit design:

- Enhanced TX drivers, Enhanced RX sensitivity
- Advanced modulation
- System control and monitoring
- Advanced CMOS nodes (beyond 28 nm)
- Integration with 3rd party IP

Transition from Wire Bonding to Through-Substrate Via (TSV)

Advanced Transceiver Products

- TSVs in photonic die (P die) eliminate power supply wire bonds to package
- TSVs allow lower parasitics for high speed interfaces
- TSVs allow smaller form factor of assemblies
- These improvements are beneficial for the next generation optical transceivers: 50 Gbps (NRZ), 100 Gbps (50 Gbaud, PAM-4)

P-die Cu Pi P-die C4 bumps Package Substrate Package Substrate

SOC/ASIC Integration

- Close integration of ASIC with photonics will revolutionize high speed interconnect
- Enables:
 - Drastic reduction in power dissipation by elimination of electrical high speed I/Os
 - Drastic increase in density and reduction in form factor
 - Increase number of ports
 - Reduction in cost, by elimination of individual transceivers
- Form factor of SOC/ASIC chip assemblies is larger than those for transceiver products (full reticle or even larger)

Acknowledgement:
This presentation contains work of the entire
Luxtera team and its technology partners, their
contributions are greatly acknowledged.

Thank you for your interest.

Luxtera Proprietary

www.luxtera.com