

FINISAR

Emerging Optical interconnect Technology for the Cloud

May 31, 2016

Topics to be Covered

- Introduction to Finisar
- Basic Optical Packaging Needs
- Trends in Optical packaging

The goal of this session is to highlight recent and emerging advances in optical interconnect packaging: topics to include standards based form factors in data centers and their differentiators; mid-board optics; high-density integration; photonics manufacturing initiatives & ecosystem.

Who is Finisar? Largest provider of Fiber Optic Transceivers

Wide portfolio of products reaching from:

<1m to >120km ; 1G to 56G/optical channel) Multi-Mode (VCSEL), Traditional Single mode, Silicon Photonics, Bidirectional, Short Wave WDM, CWDM, L and C band WDM

WW Market Share Transceivers/Transponders CY 2015 Revenue by Vendor

Ethernet, SONET/SDH, Fibre Channel, WDM, Parallel and FTTx

Metrics of Optical Interconnect

- Data at a distance
 - Measured by Bandwidth (BW) x Reach product
 - Example: 25GB/s x 12 ch x 100m = 30 TBitm/s
- Signal integrity
 - Measured in Bit Error Ratio (BER) (number or errors / number of bits transmitted)
 - Examples: 1E-15 (error free) –or-- 3E-5 for Forward Error Correction (FEC) enabled links
- <u>Density</u>
 - Measured in BW / RU (Rack Unit)
 - Example: QSFP28... 36 x 100G / RU = 3.6TB/RU
- <u>Cost</u>
 - Measured in \$US / Gbits (full duplex)
 - Example: \$US600/300G = \$2/GBit/s
- Power dissipation
 - Measured in pJ/bit (mW/GBit/s)
 - Example: 7W / 300Gbit = 23pJ/bit

Optical Packaging

Last 20 years fiber optics have been :

Largely Plugable

Examples: GBIC, SFP, XFP, QSFP, CXP, CFP, CFP2, CFP4, CFP8, uQSFP, QSFP-DD, etc.

Some Embedded: "Optical Engines":

Examples: SNAP12, POP4, BOA10, uPOD, MiniPOD, BOA25, MBOM, etc.

Going forward the Cloud Computing Data Center market needs:

Higher BW Density Lower Power Dissipation per bit Lower Cost per bit

Higher Bandwidth Density ... more bits/mm²

- Plugable modules can deliver up to 12.8TB/sec / 1RU
- Embedded or 'On Board Optics' can provide 28TB / 1RU
 - Limit of embedded modules around an ASIC set by losses in the host board.
 - Thermal Management limited by air flow blockage by fibers
- Higher densities achievable through aggregation of optics and ASIC

25G and 56G Form Factors

a=	Form Factor	BW/M	#M/RU	BW/RU	Density (Gbps/cm^3)	Power W	
-	CFP	100G	1x4	0.4T	0.68	<16	-
	CFP2	100G	1x8	0.8T	1.8	<8	-
	CFP8	400G	2x8	6.4T	10.3	<16?	-
	?SFP-DD	200G	2x15	6.0T	6.4	<5?	-
	OSFP	100G	2x15	3.0T		<3?	
	CFP4	100G	2x16	3.2T	5.3	<5	-
	CFP16	400G	2x16	12.8T	26.3	<8?	256 lanes / RU
	QSFP-DD	200G	2x18	7.2T	17.7	<7	-
	QSFP	100G	2x18	3.6T	8.9	<3.5	
	μQSFP (x8)	200G	2x16	6.4T		<7	
	μQSFP	100G	3x24	7.2T	10.0	<3.5	288 lanes / RU
	SFP-DD	50G	2x24	2.4T	7.5	<2	-
•	SFP	25G	2x24	1.2T	3.75	<1.5	-
•	DensPac4	100G	2x36	7.2T	23.3	<3.5?	288 lanes / Rl
	CXP25	300G			40	6	-
	OE25	300G		8.4T	58	6	-
	OE56	900G		25T	200	8 4	448 lanes / RU

Courtesy of William Wang, Finisar

Lower Power... lower pJ/Bit

- Higher speeds often require more power due to electrical losses in the PCB
- CDRs in the module became a required function at 25G. Often unused.
- At 56G a new IC node reduces power.
- Higher Bit rate amortizes the power consumed
- So far the combination has been a 'wash':

FINISAR

 Increased power due to board E-loss at higher speed is made up by increased speed and more efficient technology node.

Need to reduce power/bit by increasing speed without increasing the PCB losses...

 \rightarrow Eliminate crossing the PCB with the high speed trace.

Power Dissipation of Optics (<100m)

Lower Cost... lower \$/Gbit

Higher channel count provides lower cost per bit through integration

- Higher data rates (eventually) provide lower cost per bit
 - Example: 1G module costs ~ 4G module costs ~ 8G module costs today.
 - Design of product needs to be for cost parity with today's products.
- Reducing path loss leads to lower cost through simplification
 - Less need to correct distortions

Summary... Trend for Fiber Optic Packaging

- Historical: Front Panel Plugable Optics: This was the standard for 15 years
 - Maximum at <15TBps / RU ?</p>

Growth Area: <u>Mid-Board Optics</u>

- Increased BW density beyond what plugables can achieve
 - Greater than 25TB / RU is easily achievable
- Reduced power (reduced trace loss)
 - Elimination of CDR on Optical RX side (Difficult for plugables due to the long signal trace)
- Improved Signaling due to shorter traces
 - Ability to offer error free links (as opposed to 25GE SR4 which requires FEC
- Emerging area for Innovation: <u>First Level Packaging of Optics</u>
 - Optical Devices integrated on the same level of packaging as the ASIC
 - Anticipated gains:
 - Further improvement in BW density
 - Further reduction in power: Elimination of CDRs & lower E-losses
 - Lower cost per bit Simplified product

Packaging needs for Large Scale (Cloud) data Centers

- Fine pitch 30GHz package interconnect
 - 500um pitch
 - Sockets but more importantly: <u>array interconnect</u>
- High Speed Fine Pitch Substrates
 - Glass (with through vias)
 - Multi layer

- Silicon w/ low cost high density TSV
- Reflowable transparent plastics for optics
- Precision Molding of optical features
- Optical PCB materials and connectors: reduce fiber congestion
- Cost effective Multi Chip module Technology

Thank You

FINISAR

WAN: Wide Area Network

Large Scale Data Center:

Building Block is 'The Rack'

- Object : Connect as many racks as possible
- High fan-out from switches (high radix)
- Over-subscription from Spine → Leaf(1:3)
- High 'East-West' traffic; Big, flat, homogenous
 Spine Architectures are limited by the number of ports in the Spine Switch
- 2→10m for Servers to TOR/Leaf mostly DAC, some AOC at 10G; optics at 25G
- 20→300m MM runs for Leaf to Spine: Transceivers & AOC
- 100→500m+ SM runs from to spine to core
- Latency not as important; FEC acceptable
 - Time of flight on longer reaches dominates
- Non-standard OK; Multi source desired

High Performance Computing:

The building block: The 'Node'

Object : All to all connection

- Multi D Torus Structures; Hyper Cubes; Dragonfly Interconnect (N,S,E,W connection meaningless)
- Very Low over-subscription
- Breakout to processor occurs within the node
- < 2m MM runs to within the node (BOAs)</p>
- 70-100m runs to far end of the machine possible. Most runs less than 30m (AOCs)
- Latency <u>very</u> important; FEC not acceptable
 - Reducing the latency from 100ns to 80ns improves system performance 25%
- Non-standard is OK but Multi source desired.
- High use of Embedded Optics (increases BW density off the card to get closer to all to all)
 BOA= Board mounted optical Assembly (embedded optical Assembly (e

Sample Connection Scenarios for HPC

So...Key Take Aways...

- AGGREGATE Bandwidth doubles every 3 years
- Rate of Aggregate Bandwidth increase is the same for all form factors
- Cost / Gbps is lower for higher channels counts <u>at the same point in time</u>
- After 14 years the single optical channel part is the lowest cost solution
- 50G PAM4 will be the next data rate on these ramps
- 50G PAM4 expected in 2018 This may be too soon for a new modulation scheme (we all have a lot to learn)
- Consolidation of plugable form factors is needed
 - > 10 new form factors fractures the market and prevents scaling for cost
- 50G PAM4 does not satisfy all 50G markets.
 - PAM4 requires FEC; Popular FEC coding induces 100ns latency
 - Low latency is required by Supercomputing, and increasingly important to LSDC
 - Implies NRZ or low latency FEC

Next Generation Products for Large-scale Datacenters and Supercomputers

- For >256 channels in one RU (>14Tbps):
 - Recommend: MM BOA 56G PAM4
- For <256 channels in one RU:
 - Recommend: SM and MM "XYZ-FP" 56GPAM4
- Longer term: 56G NRZ for Supercomputing

