Emerging Optical interconnect Technology for the Cloud

May 31, 2016
The goal of this session is to highlight recent and emerging advances in optical interconnect packaging: topics to include standards based form factors in data centers and their differentiators; mid-board optics; high-density integration; photonics manufacturing initiatives & ecosystem.
Who is Finisar? Largest provider of Fiber Optic Transceivers

Wide portfolio of products reaching from:
 <1m to >120km; 1G to 56G/optical channel)
 Multi-Mode (VCSEL), Traditional Single mode, Silicon Photonics,
 Bidirectional, Short Wave WDM, CWDM, L and C band WDM

WW Market Share Transceivers/Transponders

CY 2015 Revenue by Vendor

Ethernet, SONET/SDH, Fibre Channel, WDM, Parallel and FTTx

Finisar 27%

Sources: Lightcounting 2016, Ovum 2016, SEC filings & Finisar internal estimates
Metrics of Optical Interconnect

- **Data at a distance**
 - Measured by Bandwidth (BW) x Reach product
 - Example: 25GB/s x 12 ch x 100m = 30 TBitm/s

- **Signal integrity**
 - Measured in Bit Error Ratio (BER) (number of errors / number of bits transmitted)
 - Examples: 1E-15 (error free) –or-- 3E-5 for Forward Error Correction (FEC) enabled links

- **Density**
 - Measured in BW / RU (Rack Unit)
 - Example: QSFP28... 36 x 100G / RU = 3.6TB/RU

- **Cost**
 - Measured in $US / Gbits (full duplex)
 - Example: $US600 / 300G = $2/GBit/s

- **Power dissipation**
 - Measured in pJ/bit (mW/GBit/s)
 - Example: 7W / 300Gbit = 23pJ/bit

RU = 19” Rack Unit (1.75” high x ~16”)

Optical Packaging

Last 20 years fiber optics have been:

Largely Plugable
Examples: GBIC, SFP, XFP, QSFP, CXP, CFP, CFP2, CFP4, CFP8, uQSFP, QSFP-DD, etc.

Some Embedded: “Optical Engines”:
Examples: SNAP12, POP4, BOA10, uPOD, MiniPOD, BOA25, MBOM, etc.

Going forward the Cloud Computing Data Center market needs:

Higher BW Density
Lower Power Dissipation per bit
Lower Cost per bit
Higher Bandwidth Density … more bits/mm^2

- Plugable modules can deliver up to 12.8TB/sec / 1RU
- Embedded or ‘On Board Optics’ can provide 28TB / 1RU
 - Limit of embedded modules around an ASIC set by losses in the host board.
 - Thermal Management limited by air flow blockage by fibers
- Higher densities achievable through aggregation of optics and ASIC

25G and 56G Form Factors

<table>
<thead>
<tr>
<th>Form Factor</th>
<th>BW/M</th>
<th>#M/RU</th>
<th>BW/RU</th>
<th>Density (Gbps/cm^2)</th>
<th>Power W</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFP</td>
<td>100G</td>
<td>1x4</td>
<td>0.4T</td>
<td>0.68</td>
<td><16</td>
</tr>
<tr>
<td>CFP2</td>
<td>100G</td>
<td>1x8</td>
<td>0.8T</td>
<td>1.8</td>
<td><8</td>
</tr>
<tr>
<td>CFP8</td>
<td>400G</td>
<td>2x8</td>
<td>6.4T</td>
<td>10.3</td>
<td><16?</td>
</tr>
<tr>
<td>QSFP-DD</td>
<td>200G</td>
<td>2x15</td>
<td>6.0T</td>
<td>6.4</td>
<td><5?</td>
</tr>
<tr>
<td>OSFP</td>
<td>100G</td>
<td>2x15</td>
<td>3.0T</td>
<td><3?</td>
<td></td>
</tr>
<tr>
<td>CFPP4</td>
<td>100G</td>
<td>2x16</td>
<td>3.2T</td>
<td>5.3</td>
<td><5</td>
</tr>
<tr>
<td>CFPP16</td>
<td>400G</td>
<td>2x16</td>
<td>12.8T</td>
<td>25.3</td>
<td><8?</td>
</tr>
<tr>
<td>QSFP</td>
<td>100G</td>
<td>2x18</td>
<td>7.2T</td>
<td>17.7</td>
<td><7</td>
</tr>
<tr>
<td>QSFPP-DD</td>
<td>200G</td>
<td>2x18</td>
<td>7.2T</td>
<td>17.7</td>
<td><7</td>
</tr>
<tr>
<td>μQSFP(x8)</td>
<td>200G</td>
<td>2x16</td>
<td>6.4T</td>
<td><7</td>
<td></td>
</tr>
<tr>
<td>μQSFPP</td>
<td>100G</td>
<td>3x24</td>
<td>7.2T</td>
<td>10.0</td>
<td><3.5</td>
</tr>
<tr>
<td>SFP-DD</td>
<td>50G</td>
<td>2x24</td>
<td>2.4T</td>
<td>7.5</td>
<td><2</td>
</tr>
<tr>
<td>SFP</td>
<td>25G</td>
<td>2x24</td>
<td>1.2T</td>
<td>3.75</td>
<td><1.5</td>
</tr>
<tr>
<td>DensPac4</td>
<td>100G</td>
<td>2x36</td>
<td>7.2T</td>
<td>23.3</td>
<td><3.5?</td>
</tr>
<tr>
<td>CNP2S</td>
<td>300G</td>
<td>---</td>
<td>8.4T</td>
<td>58</td>
<td>6</td>
</tr>
<tr>
<td>OE2S</td>
<td>300G</td>
<td>---</td>
<td>25T</td>
<td>200</td>
<td>8</td>
</tr>
</tbody>
</table>

RU = 19” Rack unit (1.75” x ~16”)

Courtesy of William Wang, Finisar
Lower Power... lower pJ/Bit

Higher speeds often require more power due to electrical losses in the PCB.

CDRs in the module became a required function at 25G. Often unused.

At 56G a new IC node reduces power.

Higher Bit rate amortizes the power consumed.

So far the combination has been a ‘wash’:

- Increased power due to board E-loss at higher speed is made up by increased speed and more efficient technology node.

Need to reduce power/bit by increasing speed without increasing the PCB losses…

→ Eliminate crossing the PCB with the high speed trace.
Lower Cost... lower $/Gbit

- Higher channel count provides lower cost per bit through integration
 - Higher data rates (eventually) provide lower cost per bit
 - Example: 1G module costs ~ 4G module costs ~ 8G module costs today.
 - Design of product needs to be for cost parity with today’s products.

- Reducing path loss leads to lower cost through simplification
 - Less need to correct distortions

1. Normalized to Expected 56GPAM introduction cost
Summary… Trend for Fiber Optic Packaging

- **Historical: Front Panel Plugable Optics:** This was the standard for 15 years
 - Maximum at <15TBps / RU?

- **Growth Area: Mid-Board Optics**
 - Increased BW density beyond what plugables can achieve
 - Greater than 25TB / RU is easily achievable
 - Reduced power (reduced trace loss)
 - Elimination of CDR on Optical RX side (Difficult for plugables due to the long signal trace)
 - Improved Signaling due to shorter traces
 - Ability to offer error free links (as opposed to 25GE SR4 which requires FEC)

- **Emerging area for Innovation: First Level Packaging of Optics**
 - Optical Devices integrated on the same level of packaging as the ASIC
 - Anticipated gains:
 - Further improvement in BW density
 - Further reduction in power: Elimination of CDRs & lower E-losses
 - Lower cost per bit Simplified product
Packaging needs for Large Scale (Cloud) data Centers

- Fine pitch 30GHz package interconnect
 - 500um pitch
 - Sockets but more importantly: array interconnect

- High Speed Fine Pitch Substrates
 - Glass (with through vias)
 - Multi layer
 - Silicon w/ low cost high density TSV

- Reflowable transparent plastics for optics
- Precision Molding of optical features

- Optical PCB materials and connectors: reduce fiber congestion
- Cost effective Multi Chip module Technology
Thank You
Back Up Slides
Large scale Data Center Architecture (25G Lane; This year)

- **ToR** Switch
- **EOR** Switch
- **Aggregation** Switch
- **EndOfRow** Switch

- **OEM switch**
 - 250 per Data Center
 - 5k per Data Center
 - 10K total 100G AOC per DC

- **SM**
- **AOC**
- **DAC Cables**

- **WAN**: Wide Area Network

The Bandwidth of these switches is:
48 server x 56G = 3TB
Easily within the capability of plugable optics

1000 servers in each row (48/rack)
Next Gen Architecture; 57.6G Lane

- **WAN**: Wide Area Network
- **Aggregation Switch**
- **EOR (Spine) Switch**
- **Server**
- **Modular Chassis Switches**
 - MM cards (grey)
 - SM cards (pink)

Diagram Notes:
- Modular Chassis Switches
 - MM cards (grey)
 - SM cards (pink)
- **100K total lowest cost links**
- **1K servers in each row (48/rack)**
- **In a row (10’s of meters)**
- **WAN**: Wide Area Network

Textual Notes:
- The Bandwidth of these switches is: 1000 server x 56G = 56TB! Far beyond the capability of plugables.
- SM cards
- **Lowest Cost**
- **Lowest Power**
 - (MM?)

Est. # of low cost short reach links is 8x the # of longer reach links based on # of T1 and T2 switches.
Large Scale Data Center:

Building Block is ‘The Rack’

Object: Connect as many racks as possible

- High fan-out from switches (high radix)
- Over-subscription from Spine → Leaf (1:3)
- High ‘East-West’ traffic; Big, flat, homogenous

Spine Architectures are limited by the number of ports in the Spine Switch

- 2→10m for Servers to TOR/Leaf mostly DAC, some AOC at 10G; optics at 25G
- 20→300m MM runs for Leaf to Spine: Transceivers & AOC
- 100→500m+ SM runs from to spine to core
- Latency not as important; FEC acceptable
 - Time of flight on longer reaches dominates
- Non-standard OK; Multi source desired

TOR = Top Of Rack; EOR = End of Row; DAC= Direct attach Copper; AOC=Active Optical Cable; FEC = Forward Error Correction
High Performance Computing:
The building block: The ‘Node’

Object: All to all connection

- Multi D Torus Structures; Hyper Cubes; Dragonfly Interconnect (N,S,E,W connection meaningless)
- Very Low over-subscription
- Breakout to processor occurs within the node
- <2m MM runs to within the node (BOAs)
- 70-100m runs to far end of the machine possible. Most runs less than 30m (AOCs)
- Latency very important; FEC not acceptable
 - Reducing the latency from 100ns to 80ns improves system performance 25%
- Non-standard is OK but Multi source desired.
- High use of Embedded Optics (increases BW density off the card to get closer to all to all)

BOA= Board mounted optical Assembly (embedded optics); AOC= Active Optical Cable; FEC = Forward Error Correction
So...Key Take Aways…

- AGGREGATE Bandwidth doubles every 3 years
- Rate of Aggregate Bandwidth increase is the same for all form factors
- Cost / Gbps is lower for higher channels counts at the same point in time
- After 14 years the single optical channel part is the lowest cost solution
- 50G PAM4 will be the next data rate on these ramps
- 50G PAM4 expected in 2018
 This may be too soon for a new modulation scheme (we all have a lot to learn)
- Consolidation of plugable form factors is needed
 - > 10 new form factors fractures the market and prevents scaling for cost
- 50G PAM4 does not satisfy all 50G markets.
 - PAM4 requires FEC; Popular FEC coding induces 100ns latency
 - Low latency is required by Supercomputing, and increasingly important to LSDC
 - Implies NRZ or low latency FEC

FEC = Forward Error Correction; LSDC = Large Scale Data Center
Next Generation Products for Large-scale Datacenters and Supercomputers

- For >256 channels in one RU (>14Tbps):
 - Recommend: MM BOA 56G PAM4
- For <256 channels in one RU:
 - Recommend: SM and MM “XYZ-FP” 56GPAM4
- Longer term: 56G NRZ for Supercomputing