

Integrity **★** Service **★** Excellence

Flexible Hybrid Electronics for Aerospace Applications

B.J. Leever, B. Maruyama, M.F. Durstock, J.D. Berrigan, C.E. Tabor, A.T. Juhl

AFRL/RXAS Materials & Manufacturing Directorate Air Force Research Laboratory Wright-Patterson AFB, OH 45433

AFRL: Turning Science Into Capability

Driven by Service Core Functions

Vectored by Air Force Strategy + S&T Vision/Horizons + Product Center Needs + MAJCOM Needs

Air Force Research Laboratory Technical Competencies

Convergence of Electronics Manufacturing Services & Roll-to-Roll / Digital Printing Industries

Printed Electronics

Placed Electronics

How could Flexible Hybrid Electronics Impact the Air Force?

Man-Machine Interface

Airman performance limits capability in MANY military missionsand new technologies are needed to sense, assess and augment the "Airman-in-the-Loop"

- RPA Ops
- Information Overload
- Missed Intelligence
- Threat/Danger Missed

Integrated & Flexible Power

Energy limits operational capabilities and mission impact for unmanned vehicles and wearable electronics

Issues:

- Cost & Weight
- •Scale-up
- •Durability

Integrated Power harvesting, storage, and management

Embedded/Conformal Electronics for ISR/EW

Information and tracking in contested environments is foundational to decision making and force projection

- Communication (conformal apertures)
- Distributed electronics for feedback and structural health

Survivable Electronics

Precision effects with smaller, low profile munitions pressing requirement for current and future platform effectiveness

• Robust electronics in extreme environments (shock, vibration, thermal)

Distribution Stat

ved for Public Release. Distribution is unlimited. Case # 88ABW-2016-1256.

- Accelerate development and transition of FHE technologies to Air Force functional materials community
- Phased plan for FHE technology insertions

Direct-Write Conformal Antenna on MQ-9

Need

- Additional communications capabilities are required on the MQ-9.
- Conventional approaches to add antennas often requires new tooling (high cost, long lead time) and drilling of holes in the carbon fiber structure.
- Fuselage is crowded with apertures for communications, leading to co-site interference.

Technical Approach

- Retro-fit existing fleet with conformal antennas by simply replacing existing servo covers.
- Design and direct-write Cu antenna onto servo cover using plasma spray technique.
- Minimize co-site interference by installing onto unique locations of aircraft.

Phase I Results

- Indoor range data showed VSWR and directivity comparable with COTS components.
- Cu removal from part required a grinder.
- Significant directivity benefit in crosspolarization performance due to location

oution is unlimited. Case # 88ABW-2016-1256.

Air Force Needs for Performance Monitoring

AF Mission Areas

- COTS products focus on primarily on motion and cardio-respiratory sensing, with innovation/IP primarily targeting algorithm development
- AF needs advanced biosignatures sensing for cognition, stress, fatigue, etc.
- Consumer products will not survive challenging AF environments
- AF needs unobtrusive devices with chemical and mechanical durability

Traditional electronic components and packaging will not meet Air Force requirements.

Flexible Materials & Devices

Research Leader: Dr. Benji Maruyama

Developing critical Materials & Processes to enable flexible hybrid electronic systems for airman performance monitoringlightweight, flex/stretch, conformal, multifunctional, robust, autonomous

IMPRINT

Novel materials

- Inherently strain-resilient
- Wafer thinning
- Liquid metals

• Ensure survivability

Conformal & integrated printing approaches

AMI

- Rapid design cycle
- Enables retrofit
- Tailored materials and properties

CORNING Harvard University

brewer science

Understanding Reliability and Physics of Failure for Wearable Devices

AFRL program executed through NextFlex

NEXTFLEX

Program Manager: Laura Sowards

- Fundamental understanding of

the physics of failure in wearable performance monitoring devices under operationally relevant conditions

- Recommendations for design, manufacturing and quality assessment of next generation robust, high performing WPMs - Centralized Reliability Labs with broad simulation and testing capabilities at Binghamton University, available to NextFlex Community for quality & reliability assessment of WPMs under military, athletic & clinical use conditions

NextFlex: America's Flexible Hybrid Electronics Manufacturing Institute

Established: August 2015 Lead: FlexTech Alliance Hub location: San Jose, California Members: 72 in 25 states Federal Funding: \$75M Cost Share: > \$95M Government agencies engaged: 17

Catalyzing a robust and innovative manufacturing ecosystem at the intersection of the electronics and high performance printing industries.

<u>Focus:</u> Combining the entrepreneurial & innovative culture of Silicon Valley with a national network of regional & technology nodes to commercialize FHE technology through manufacturing advancements in integrated printing & packaging, system design tools, materials scale-up, thinned device processing, and reliability testing & modeling.